Featured Research

from universities, journals, and other organizations

Microscopic 'Beads' Could Help Create 'Designer' Immune Cells That Ignore Transplanted Organs

Date:
July 16, 2009
Source:
Medical College of Georgia
Summary:
The future of organ transplantation could include microscopic beads that create "designer" immune cells to help patients tolerate their new organ, researchers say.

Dr. Horuzsko and HLA-G.
Credit: Image courtesy of Medical College of Georgia

The future of organ transplantation could include microscopic beads that create "designer" immune cells to help patients tolerate their new organ, Medical College of Georgia researchers say.

Related Articles


"It's absolutely natural," says Dr. Anatolij Horuzsko, reproductive immunologist at the MCG Center for Molecular Chaperone/Radiobiology and Cancer Virology, who has used the approach successfully in mice with skin grafts.

The degradable microparticles deliver the most powerful known form of HLA-G, a natural suppressor of the immune response, straight to dendritic cells, which typically show the immune system what to attack. The microparticles are given right after a transplant, just as dendritic cells are giving the immune system a heads up to get busy attacking the new organ.

Microparticle therapy likely would be needed for just a few weeks, until the dendritic cells have learned instead to ignore it, Dr. Horuzsko says. "It's like a calming effect and once tolerance is established, we don't need it any more."

His lab reported its success with this delivery method in mice with skin grafts last month in Human Immunology. When researchers compared the success of HLA-G microparticles with the dendritic cell marker to those without a marker, those with were much more efficient at getting where needed and acting, he says. Those without direction likely were consumed by garbage eaters called macrophages.

Unlike current anti-rejection drugs that generally suppress the immune system – leaving patients vulnerable to infections, cancer and more – HLA-G offers specific "tolerance." Fetuses, which also use the compound to escape rejection by the mother's immune system, are good examples of the specific tolerance HLA-G affords, Dr. Horuzsko says.

"We want to create in kidney transplant patients, the same tolerance to the new kidney." Within five years, HLA-G microparticles could be doing just that, Dr. Horuzsko says. He presented the patented process along with his other latest HLA-G findings during an opening lecture of the 5th International Conference on HLA-G in Paris, July 6-8.

Marked microparticles also have treatment potential in diseases where the immune system attacks normal tissue, such as arthritis, multiple sclerosis and inflammatory bowel disease, Dr. Horuzsko says. Conversely the method could be used to deliver a compound to block HLA-G activity, which also is heightened in tumors.

The scientist also is working with Dr. Laura Mulloy, chief of the Section of Nephrology, Hypertension and Transplantation Medicine in the MCG School of Medicine, to determine if higher natural levels of HLA-G already are giving some transplant patients an edge by comparing HLA-G expression in those who keep and reject their transplanted kidneys

Dr. Horuzsko reported last year in Proceedings of the National Academy of Sciences that the dimer form of HLA-G was the most powerful of the known forms and now he and many others are searching for the most powerful dimer, hoping the most successful transplant patients will help them make that call.

HLA-G works through inhibitory receptors, ILT2, ILT3 and ILT4, on dendritic cells, triggering a signaling pathway in which several suppressive molecules get activated to help protect the transplanted organ or tissue. Human leukocyte antigen G, or HLA-G, actually is a member of a gene family called major histocompatibility complex that typically provokes an immune response. Like an errant child, HLA-G instead promotes tolerance, Dr. Horuzsko says.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Microscopic 'Beads' Could Help Create 'Designer' Immune Cells That Ignore Transplanted Organs." ScienceDaily. ScienceDaily, 16 July 2009. <www.sciencedaily.com/releases/2009/07/090706112908.htm>.
Medical College of Georgia. (2009, July 16). Microscopic 'Beads' Could Help Create 'Designer' Immune Cells That Ignore Transplanted Organs. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/07/090706112908.htm
Medical College of Georgia. "Microscopic 'Beads' Could Help Create 'Designer' Immune Cells That Ignore Transplanted Organs." ScienceDaily. www.sciencedaily.com/releases/2009/07/090706112908.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins