Featured Research

from universities, journals, and other organizations

One-finger Exercise Reveals Unexpected Limits To Dexterity

Date:
July 12, 2009
Source:
University of Southern California
Summary:
"Push your finger as hard as you can against the surface. Now as hard as you can but move it slowly -- follow the ticking clock. Now faster. Now faster." These were the commands for volunteers in a simple experiment that casts doubt on old ideas about mechanisms to control hand muscles. Complete understanding of the result may help explain why manual dexterity is so vulnerable to aging and disease, and even help design more versatile robotic graspers.

Adult volunteers wearing a close-fitting Teflon cover on their forefingers applied fingertip pressure on a slippery Teflon surface linked to a force-measuring sensor.
Credit: University of Southern California

"Push your finger as hard as you can against the surface. Now as hard as you can but move it slowly - follow the ticking clock. Now faster. Now faster."

Related Articles


These were the commands for volunteers in a simple experiment that casts doubt on old ideas about mechanisms to control hand muscles. Complete understanding of the result may help explain why manual dexterity is so vulnerable to aging and disease, and even help design more versatile robotic graspers.

A research team led by Francisco Valero-Cuevas of the University of Southern California reports the paradoxical result in the Journal of Neuroscience.

"We expected to find," says the report, "that maximal voluntary downward force would scale with movement speed…. Surprisingly, maximal force was independent of movement speed."

The observation challenges theories that date back nearly seventy years about how the properties of muscles influence their everyday function, and how "redundant" our bodies are.

According to Valero-Cuevas, who holds a joint appointment in the USC Viterbi School of Engineering's department of biomedical engineering and the USC Division of Biokinesiology and Physical Therapy, in many tasks muscle force is affected by physiological "force-velocity" properties that weaken muscles as they move faster.

"That is why your bicycle has gears, and why as a child you could not speed up much on level ground," he explains.

Valero-Cuevas and his collaborators set up a simple experiment to characterize how finger velocity made a difference in the force produced during the common manipulation task similar to rubbing a surface, using a computer track pad or iphone. Adult volunteers wearing a closefitting Teflon cover on their forefingers applied fingertip pressure on a slippery Teflon surface linked to a force-measuring sensor.

First, the volunteers simply pressed as hard as they could without moving. Then, still pressing as hard as they could they moved their fingers against the surface to the beat of a metronome.

"As expected, maximal downward force diminished when motion was added to the task," the researchers wrote. "But remarkably, there were no significant differences … between slow, and fast movement speeds… even though the movement speeds varied 36-fold."

The paper, "Maximal Voluntary Fingertip Force Production is Not Limited by Movement Speed in Combined Motion and Force Tasks," goes on to discuss and rule out several possible explanations for the result, including differing levels of dexterity by the subjects, non-linear responses by muscles, and finger-muscle asymmetries.

The explanation proposed by Valero-Cuevas and collaborators (and former students) Kevin G. Keenan of the University of Wisconsin/Milwaukee, Veronica J. Santos of Arizona State University, and Madhusudhan Venkadesan of Harvard University, is that the universe of possible commands sent by the brain to the muscles is severely limited by the mechanical nature of the task, even for ordinary manipulation tasks.

That is, say the scientists, that even for seemingly-simple real-world tasks where we must control both force and motion, the neuromuscular system can be pushed to its limits of performance.

This complements other recent work by Valero-Cuevas showing how other ordinary tasks like tapping a surface are extremely challenging to the nervous system.

Together these results begin to identify the mechanical pressures that could have driven the evolutionary specializations of our brains and bodies that make our hands so dexterous.

"These apparently esoteric results have tremendous implications for both humans and robots," Valero-Cuevas says. "For one, they bring together basic research and clinical reality by helping explain the high vulnerability of dexterous everyday function to disease and injury in spite of the many muscles and joints we have.

"In addition, they suggest to engineers that adding redundant motors to robots may actually be the key to making them dexterous."

The detailed interactions among muscles and body mechanics are complex and defy easy mathematical modeling at this time, he adds, but further study may offer clues.

The research was supported in part by grants from the NSF and NIH.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "One-finger Exercise Reveals Unexpected Limits To Dexterity." ScienceDaily. ScienceDaily, 12 July 2009. <www.sciencedaily.com/releases/2009/07/090708073847.htm>.
University of Southern California. (2009, July 12). One-finger Exercise Reveals Unexpected Limits To Dexterity. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/07/090708073847.htm
University of Southern California. "One-finger Exercise Reveals Unexpected Limits To Dexterity." ScienceDaily. www.sciencedaily.com/releases/2009/07/090708073847.htm (accessed October 25, 2014).

Share This



More Mind & Brain News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Academic Scandal Shocks UNC

Academic Scandal Shocks UNC

AP (Oct. 23, 2014) A scandal involving bogus classes and inflated grades at the University of North Carolina was bigger than previously reported, a new investigation found. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Working Mother Getaway: Beaches Turks & Caicos

Working Mother Getaway: Beaches Turks & Caicos

Working Mother (Oct. 22, 2014) Feast your eyes on this gorgeous family-friendly resort. Video provided by Working Mother
Powered by NewsLook.com
What Your Favorite Color Says About You

What Your Favorite Color Says About You

Buzz60 (Oct. 22, 2014) We all have one color we love to wear, and believe it or not, your color preference may reveal some of your character traits. In celebration of National Color Day, Krystin Goodwin (@kyrstingoodwin) highlights what your favorite colors may say about you. Video provided by Buzz60
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins