Featured Research

from universities, journals, and other organizations

Brain's Center For Perceiving 3-D Motion Is Identified

Date:
July 21, 2009
Source:
University of Texas at Austin
Summary:
Neuroscientists have now pinpointed where and how the brain processes 3-D motion using specially developed computer displays and an fMRI (functional magnetic resonance imaging) machine to scan the brain.

Drs. Bas Rokers (pictured), Alex Huk and Larry Cormack discovered the center for 3-D motion processing in the human brain, the MT+ area. An enhanced image of Rokers' brain from an fMRI scan shows the MT+ area active when perceiving 3-D motion (bright blue area in the lower left of the photo).
Credit: Brain rendering by Thadeus Czuba. Photo by Marsha Miller

Ducking a punch or a thrown spear calls for the power of the human brain to process 3-D motion, and to perceive an object (whether it's offensive or not) moving in three dimensions is critical to survival. It also leads to a lot of fun at 3-D movies.

Related Articles


Neuroscientists have now pinpointed where and how the brain processes 3-D motion using specially developed computer displays and an fMRI (functional magnetic resonance imaging) machine to scan the brain.

They found, surprisingly, that 3-D motion processing occurs in an area in the brain—located just behind the left and right ears—long thought to only be responsible for processing two-dimensional motion (up, down, left and right).

This area, known simply as MT+, and its underlying neuron circuitry are so well studied that most scientists had concluded that 3-D motion must be processed elsewhere. Until now.

"Our research suggests that a large set of rich and important functions related to 3-D motion perception may have been previously overlooked in MT+," says Alexander Huk, assistant professor of neurobiology. "Given how much we already know about MT+, this research gives us strong clues about how the brain processes 3-D motion."

For the study, Huk and his colleagues had people watch 3-D visualizations while lying motionless for one or two hours in an MRI scanner fitted with a customized stereovision projection system.

The fMRI scans revealed that the MT+ area had intense neural activity when participants perceived objects (in this case, small dots) moving toward and away from their eyes. Colorized images of participants' brains show the MT+ area awash in bright blue.

The tests also revealed how the MT+ area processes 3-D motion: it simultaneously encodes two types of cues coming from moving objects.

There is a mismatch between what the left and right eyes see. This is called binocular disparity. (When you alternate between closing your left and right eye, objects appear to jump back and forth.)

For a moving object, the brain calculates the change in this mismatch over time.

Simultaneously, an object speeding directly toward the eyes will move across the left eye's retina from right to left and the right eye's retina from left to right.

"The brain is using both of these ways to add 3-D motion up," says Huk. "It's seeing a change in position over time, and it's seeing opposite motions falling on the two retinas."

That processing comes together in the MT+ area.

"Who cares if the tiger or the spear is going from side to side?" says Lawrence Cormack, associate professor of psychology. "The most important kind of motion you can see is something coming at you, and this critical process has been elusive to us. Now we are beginning to understand where it occurs in the brain."

Huk, Cormack, and post-doctoral research and lead author Bas Rokers published their findings in Nature Neuroscience online the week of July 7. They are members of the Institute for Neuroscience and Center for Perceptual Systems. The research was supported by a National Science Foundation CAREER Award to Huk.


Story Source:

The above story is based on materials provided by University of Texas at Austin. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas at Austin. "Brain's Center For Perceiving 3-D Motion Is Identified." ScienceDaily. ScienceDaily, 21 July 2009. <www.sciencedaily.com/releases/2009/07/090721091831.htm>.
University of Texas at Austin. (2009, July 21). Brain's Center For Perceiving 3-D Motion Is Identified. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/07/090721091831.htm
University of Texas at Austin. "Brain's Center For Perceiving 3-D Motion Is Identified." ScienceDaily. www.sciencedaily.com/releases/2009/07/090721091831.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins