Featured Research

from universities, journals, and other organizations

Abnormal Brain Circuits May Prevent Movement Disorder

Date:
August 10, 2009
Source:
Society for Neuroscience
Summary:
Specific changes in brain pathways may counteract genetic mutations for the movement disorder dystonia, according to new research. Few people who inherit dystonia genes display symptoms -- namely sustained muscle contractions and involuntary gestures -- and the study provides a possible explanation. This result could lead to new treatments for the estimated 500,000 North Americans diagnosed with dystonia.

Specific changes in brain pathways may counteract genetic mutations for the movement disorder dystonia, according to new research in the August 5 issue of The Journal of Neuroscience. Few people who inherit dystonia genes display symptoms — namely sustained muscle contractions and involuntary gestures — and the study provides a possible explanation. This result could lead to new treatments for the estimated 500,000 North Americans diagnosed with dystonia.

Related Articles


In this study, researchers looked for the first time at how brain connections might explain the disorder. "Our findings begin to show why someone can live with a genetic mutation without ever developing the disease," said David Eidelberg, MD, at The Feinstein Institute for Medical Research, the study's senior author.

Scientists at The Feinstein Institute used an MRI-based approach called diffusion tensor imaging, a technique that maps the connections between structures in the human brain. Twenty patients with mutated genes associated with dystonia were assessed (12 with symptoms, eight without), along with eight healthy patients without these mutations.

The authors identified two different brain pathways that determine the severity of symptoms. One pathway connecting the cerebellum with the thalamus is abnormal in all people carrying the mutant gene, and predisposes carriers to dystonia. In the patients with mutated genes but no symptoms, a second pathway between the thalamus and the cortex is also abnormal. Surprisingly, this second pathway is normal in patients with symptoms. The researchers suggest that in people who have the mutations but no symptoms, the second abnormality may offset the effect of the first, preventing the disease's outward signs.

David Standaert, MD, PhD, at University of Alabama at Birmingham, is an expert in Parkinson's disease and other movement disorders and was not affiliated with the study. Standaert says that although dystonia is a relatively rare disorder, the study has implications for other neurological illnesses, such as Parkinson's, Alzheimer's, and Huntington's diseases; ataxia and muscular dystrophies; and even forms of migraine.

"The core idea here is that many diseases can be triggered by a single gene, but the expression of this gene can differ greatly, even in individuals from the same family," Standaert said. "Dystonia provides dramatic examples of this. Two siblings may have the same abnormal gene, but one will be severely disabled by twisting and cramping of the muscles, while the other will be essentially normal."

The pathway abnormalities identified in the study could likely have formed in an early stage of brain development, Standaert suggested. Symptoms in adult life, therefore, may be determined by subtle shifts in early brain growth. Detailed study of these newly implicated pathways in both humans and animals could lead to ways to prevent symptoms, if balance to the affected pathways is restored.

The research was supported by the National Institutes of Health, the Bachmann-Strauss Dystonia and Parkinson Foundation, and the General Clinical Research Center of The Feinstein Institute for Medical Research.


Story Source:

The above story is based on materials provided by Society for Neuroscience. Note: Materials may be edited for content and length.


Cite This Page:

Society for Neuroscience. "Abnormal Brain Circuits May Prevent Movement Disorder." ScienceDaily. ScienceDaily, 10 August 2009. <www.sciencedaily.com/releases/2009/08/090804174725.htm>.
Society for Neuroscience. (2009, August 10). Abnormal Brain Circuits May Prevent Movement Disorder. ScienceDaily. Retrieved February 1, 2015 from www.sciencedaily.com/releases/2009/08/090804174725.htm
Society for Neuroscience. "Abnormal Brain Circuits May Prevent Movement Disorder." ScienceDaily. www.sciencedaily.com/releases/2009/08/090804174725.htm (accessed February 1, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Sunday, February 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
Study Shows Newborn Chicks Count From Left to Right Just Like Humans

Study Shows Newborn Chicks Count From Left to Right Just Like Humans

Buzz60 (Jan. 30, 2015) Researchers for the first time identified human&apos;s innate preference for associating low and high numbers with the left and right respectively in another species. Jen Markham (@jenmarkham) explains. Video provided by Buzz60
Powered by NewsLook.com
Best Mood Elevating, Feel Good Shakes & Smoothies

Best Mood Elevating, Feel Good Shakes & Smoothies

Buzz60 (Jan. 30, 2015) You can elevate your mood by having a meal in a glass. Fitness and nutrition expert John Basedow (@JohnBasedow) offers the best &apos;feel good&apos; smoothies and shakes chock full of depression-relieving ingredients...including apples, berries, lemons, cucumbers, papaya, kiwi, spinach, kale, whey protein, matcha, ginger, turmeric and cinnamon. Video provided by Buzz60
Powered by NewsLook.com
Poll Says Firstborn Is Responsible, Youngest Is Funnier

Poll Says Firstborn Is Responsible, Youngest Is Funnier

Newsy (Jan. 30, 2015) According to a poll out of the U.K., eldest siblings feel more responsible and successful than their younger siblings. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins