Featured Research

from universities, journals, and other organizations

Intelligent Structural Elements: Support Frames, Adaptive Engine Hoods And More To Come

Date:
October 13, 2009
Source:
University of Stuttgart
Summary:
Weather conditions such as wind and snow loads can cause failure and collapse of supporting structures in roofs and similar constructions. Based on new hybrid intelligent construction elements (HICE), researchers in Germany have developed a shell structure which is able to adapt to changing environmental conditions. In a further step, the scientists will now use their knowledge to develop machines from these new structural elements which will also be able to react to their environments and adapt to given conditions.

Shell structure is able to adapt to changing environmental conditions.

Weather conditions such as wind and snow loads can cause failure and collapse of supporting structures in roofs and similar constructions. Based on new hybrid intelligent construction elements (HICE), researchers at the University of Stuttgart have developed a shell structure which is able to adapt to changing environmental conditions. In a further step, the scientists will now use their knowledge to develop machines from these new structural elements which will also be able to react to their environments and adapt to given conditions.

Related Articles


According to experts, this development may eventually lead to a significant acceleration of entire construction processes in mechanical, electrical and control engineering.

A research group of six engineers from different fields such as civil, aerospace, mechanical and process engineering is funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) with a grant of 1.858 m € assigned for the first three years of a six-year project. The research group has started to operate in June.

The structural elements (e.g. shafts, levers, tractive or surface elements) are provided with integrated sensors, actuators and control elements. Light-weight and wear-resistant materials increase their functionality. Within the course of three years, the scientists from Stuttgart hope to assemble six newly-developed HICEs (membrane shells, adaptive cover elements, tile coating elements, inflexible force transmission elements, hybrid rope elements, bearing and lever elements) into a large-scale demonstrator shell structure measuring five square metres, which will combine all of the HICEs’ functionalities. The adaptive shell structure will be translucent and much lighter than conventional supporting structures. If a change in environmental factors such as wind load, wind direction or snow load occurs, the structure shall be able to dissipate strain autonomously and adaptively via levers, ties and shell elements in order to prevent failure. The demonstrator will be exhibited by the University of Stuttgart.

Portability to all engineering disciplines

In a second phase of the project, the participating researchers will try to show by means of further constructions that HICEs can be applied in all engineering disciplines. By way of example, a hybrid engine bonnet shall be developed which may be combined with state-of-the-art “active” bonnets. This could improve pedestrian safety significantly by preventing severe injuries in case of a collision with this type of bonnet: Standard active bonnets are able to report the clash via additional sensors to an electronic control device which then prompts the rear part of the bonnet to be lifted upwards via a lever structure. This creates a protective distance between the accident victim and the hard engine parts beneath the bonnet. An intelligent hybrid engine bonnet would additionally create a specific deformation of the bonnet in reaction to the parameters of the actual collision. Based on new materials, the bonnet shall be able to soften or harden relevant areas of its structure autonomously in order to prevent injuries as far as possible.

In addition, demonstrators for the application of HICEs in shaft-to-collar connections and machine enclosures will be developed.

The participating institutions are the Institutes of Mechanical Handling and Logistics, of Construction Technology and Technical Design, of Textile and Process Engineering, of Aircraft Design, of Design and Construction and of Metal Forming Technology. “Within six years, the research group will have developed an entirely new class of hybrid intelligent construction elements together with its respective constructional and computational methods. We will have reached a new level of systems integration”, says research group spokesman Prof. Karl-Heinz Wehking.


Story Source:

The above story is based on materials provided by University of Stuttgart. Note: Materials may be edited for content and length.


Cite This Page:

University of Stuttgart. "Intelligent Structural Elements: Support Frames, Adaptive Engine Hoods And More To Come." ScienceDaily. ScienceDaily, 13 October 2009. <www.sciencedaily.com/releases/2009/09/090902122325.htm>.
University of Stuttgart. (2009, October 13). Intelligent Structural Elements: Support Frames, Adaptive Engine Hoods And More To Come. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2009/09/090902122325.htm
University of Stuttgart. "Intelligent Structural Elements: Support Frames, Adaptive Engine Hoods And More To Come." ScienceDaily. www.sciencedaily.com/releases/2009/09/090902122325.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins