Featured Research

from universities, journals, and other organizations

Necessary Process In Forming Long-term Memory Identified

Date:
September 10, 2009
Source:
University of Haifa
Summary:
A new study has identified another component in the chain of actions that take place in the neurons in the process of forming memories. This discovery joins a line of findings from previous studies that together provide a better understanding of the most complex processes in nature -- the process of memory formation and storage in the human brain.

A new study that was carried out at the University of Haifa has identified another component in the chain of actions that take place in the neurons in the process of forming memories. This discovery joins a line of findings from previous studies that together provide a better understanding of the most complex processes in nature – the process of memory formation and storage in the human brain. The new study has been published in the Journal of Neuroscience.

The human brain is continuously inundated with sensory information on the world: new sounds, tastes, sights and smells and the formation of memory to these inputs is ultimately vital for animal survival. Very little of this information becomes short-term memory. And only a small part of the information that becomes short-term memory ultimately becomes long-term and stabilized memory. Earlier studies that were carried out at the Molecular Mechanisms of Learning and Memory laboratory headed by Prof. Kobi Rosenblum at the University of Haifa found that the an elevation in the expression of the protein PSD-95 is necessary for the formation of long-term memory. The present study aimed to find out whether another molecular process – the addition of a phosphor molecule to the NMDA receptor protein (phosphorylation) – is necessary too.

Earlier studies have proven that changes in the NMDA receptor can adjust the neuronal network in the brain, and that during a learning process this receptor undergoes increased phosphorylation. Until now, it had not been proved that the increase in phosphorylation of the NMDA is necessary for the process and that the process would not occur without it.

In order to prove this, the scientists - headed by Prof. Rosenblum, Head of the Department of Neurobiology and Ethology at the University of Haifa, and Dr. Liza Barki-Harrington, along with Dr. Alina Elkobi and research student Tali Tzabary - chose to focus on the formation of new taste memory in rats as a model for sensory memory. According to the researchers, examining taste-learning processes has advantages in this type of research, since it enables tracking when the process begins, what its specific location is in the brain and the molecular processes that occur during the process.

The first stage of the study aimed to verify the findings of the previous studies and showed that the new taste learning does indeed involve a process of increased phosphorylation in the NMDA receptors in the area specific to learning taste in the brain. In order to do so, mature rats were trained to drink water at set times and after a few days some were given saccharine-sweetened water. The saccharine has no caloric value and therefore has no metabolic impact on the body and cannot affect the body's processes. As expected, the rats that received the newly sweet-tasting water and that began a process of learning, showed an increase in phosphorylation in comparison to those rats that continued drinking regular water.

The second stage of the study was aimed at showing that the phosphorylation process is essential. For this, the scientists injected a new group of rats with a substance that inhibits phosphorylation of the NMDA in the area of taste learning in the brain when drinking the saccharine. Tests that were carried out afterwards showed that these rats were not able to learn the new taste, which proves that the phosphorylation process is necessary for learning taste. The researchers found that obstruction of the process brings about a change in the location of the receptor in relation to the NMDA and thereby is likely to be responsible for inhibiting the formation of long-term memory.

"Our goal is to identify piece after piece of the complex puzzle that is the formation of long-term memory. Once we know how to describe the chain of actions that take place in the brain, we may be able to know where and how to interfere," Dr. Barki-Harrington said.

"The glutamate neural synapses – via the receptors of the NMDA – and dophamin, play a central role in a number of neural pathologies, including processes of addiction and of schizophrenia. There is good reason to assume that one afflicted with schizophrenia has a sub- or over-functioning of this system, and its loss of balance is one of the causes of the illness. A better understanding of this balance - or loss of balance - in the normal processes will enable future discovery of new objectives for developing medications, which we hope will improve patients' lives significantly," Prof. Rosenblum stated.


Story Source:

The above story is based on materials provided by University of Haifa. Note: Materials may be edited for content and length.


Cite This Page:

University of Haifa. "Necessary Process In Forming Long-term Memory Identified." ScienceDaily. ScienceDaily, 10 September 2009. <www.sciencedaily.com/releases/2009/09/090908103636.htm>.
University of Haifa. (2009, September 10). Necessary Process In Forming Long-term Memory Identified. ScienceDaily. Retrieved August 26, 2014 from www.sciencedaily.com/releases/2009/09/090908103636.htm
University of Haifa. "Necessary Process In Forming Long-term Memory Identified." ScienceDaily. www.sciencedaily.com/releases/2009/09/090908103636.htm (accessed August 26, 2014).

Share This




More Mind & Brain News

Tuesday, August 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Have You Ever Been 'Sleep Drunk?' 1 in 7 Has

Newsy (Aug. 26, 2014) A study published in the journal "Neurology" interviewed more than 19,000 people and found 15 percent suffer from being "sleep drunk." Video provided by Newsy
Powered by NewsLook.com
Does Medical Marijuana Reduce Painkiller Overdose Deaths?

Does Medical Marijuana Reduce Painkiller Overdose Deaths?

Newsy (Aug. 26, 2014) A new study found fewer deaths from prescription drug overdoses in states that have legalized medical marijuana. But experts disagree on the results. Video provided by Newsy
Powered by NewsLook.com
Heart Group: E-Cigarettes May Help Smokers Quit

Heart Group: E-Cigarettes May Help Smokers Quit

AP (Aug. 25, 2014) The American Heart Association's first policy statement on electronic cigarettes backs them as a last resort to help smokers quit and calls for more regulation to keep them away from youth. (Aug. 25) Video provided by AP
Powered by NewsLook.com
Doctors Push For Later Start Times As School Year Kicks Off

Doctors Push For Later Start Times As School Year Kicks Off

Newsy (Aug. 25, 2014) The American Academy of Pediatrics is the latest group pushing for middle schools and high schools to start later, for the sake of their kids. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins