Featured Research

from universities, journals, and other organizations

Magnetic Fields Play Larger Role In Star Formation Than Previously Thought

Date:
September 11, 2009
Source:
Harvard-Smithsonian Center for Astrophysics
Summary:
The simple picture of star formation calls for giant clouds of gas and dust to collapse inward due to gravity, growing denser and hotter until igniting nuclear fusion. In reality, forces other than gravity also influence the birth of stars. New research shows that cosmic magnetic fields play a more important role in star formation than previously thought.

The simple picture of star formation calls for giant clouds of gas and dust to collapse inward due to gravity, growing denser and hotter until igniting nuclear fusion. In reality, forces other than gravity also influence the birth of stars. New research shows that cosmic magnetic fields play a more important role in star formation than previously thought.

A molecular cloud is a cloud of gas that acts as a stellar nursery. When a molecular cloud collapses, only a small fraction of the cloud's material forms stars. Scientists aren't sure why.

Gravity favors star formation by drawing material together, therefore some additional force must hinder the process. Magnetic fields and turbulence are the two leading candidates. (A magnetic field is produced by moving electrical charges. Stars and most planets, including Earth, exhibit magnetic fields.) Magnetic fields channel flowing gas, making it hard to drawn the gas from all directions, while turbulence stirs the gas and induces an outward pressure that counteracts gravity.

"The relative importance of magnetic fields versus turbulence is a matter of much debate," said astronomer Hua-bai Li of the Harvard-Smithsonian Center for Astrophysics. "Our findings serve as the first observational constraint on this issue."

Li and his team studied 25 dense patches, or cloud cores, each one about a light-year in size. The cores, which act as seeds from which stars form, were located within molecular clouds as much as 6,500 light-years from Earth. (A light-year is the distance light travels in a year, or 6 trillion miles.)

The researchers studied polarized light, which has electric and magnetic components that are aligned in specific directions. (Some sunglasses work by blocking light with specific polarization.) From the polarization, they measured the magnetic fields within each cloud core and compared them to the fields in the surrounding, tenuous nebula.

The magnetic fields tended to line up in the same direction, even though the relative size scales (1 light-year cores versus 1000 light-year nebulas) and densities were different by orders of magnitude. Since turbulence would tend to churn the nebula and mix up magnetic field directions, their findings show that magnetic fields dominate turbulence in influencing star birth.

"Our result shows that molecular cloud cores located near each other are connected not only by gravity but also by magnetic fields," said Li. "This shows that computer simulations modeling star formation must take strong magnetic fields into account."

In the broader picture, this discovery aids our understanding of how stars form and, therefore, how the universe has come to look the way it is today.

The paper detailing these findings has been accepted for publication in The Astrophysical Journal.


Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center for Astrophysics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hua-bai Li, C. Darren Dowell, Alyssa Goodman, Roger Hildebrand, Giles Novak. Title: Anchoring Magnetic Field in Turbulent Molecular Clouds. The Astrophysical Journal, 2009; (accepted for publication) [link]

Cite This Page:

Harvard-Smithsonian Center for Astrophysics. "Magnetic Fields Play Larger Role In Star Formation Than Previously Thought." ScienceDaily. ScienceDaily, 11 September 2009. <www.sciencedaily.com/releases/2009/09/090909122146.htm>.
Harvard-Smithsonian Center for Astrophysics. (2009, September 11). Magnetic Fields Play Larger Role In Star Formation Than Previously Thought. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/09/090909122146.htm
Harvard-Smithsonian Center for Astrophysics. "Magnetic Fields Play Larger Role In Star Formation Than Previously Thought." ScienceDaily. www.sciencedaily.com/releases/2009/09/090909122146.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins