Featured Research

from universities, journals, and other organizations

Invading Black Holes Explain Cosmic Flashes

Date:
September 19, 2009
Source:
University of Leeds
Summary:
Black holes are invading stars, providing a radical explanation to bright flashes in the universe that are one of the biggest mysteries in astronomy today.

Artist's concept: In the center of a swirling whirlpool of hot gas is likely a beast that has never been seen directly: a black hole.
Credit: A. Hobart, CXC

Black holes are invading stars, providing a radical explanation to bright flashes in the universe that are one of the biggest mysteries in astronomy today.

Related Articles


The flashes, known as gamma ray bursts, are beams of high energy radiation – similar to the radiation emitted by explosions of nuclear weapons – produced by jets of plasma from massive dying stars.

The orthodox model for this cosmic jet engine involves plasma being heated by neutrinos in a disk of matter that forms around a black hole, which is created when a star collapses.

But mathematicians at the University of Leeds have come up with a different explanation: the jets come directly from black holes, which can dive into nearby massive stars and devour them.

Their theory is based on recent observations by the Swift satellite which indicates that the central jet engine operates for up to 10,000 seconds - much longer than the neutrino model can explain.

Mathematicians believe that this is evidence for an electromagnetic origin of the jets, i.e. that the jets come directly from a rotating black hole, and that it is the magnetic stresses caused by the rotation that focus and accelerate the jet's flow.

For the mechanism to operate the collapsing star has to be rotating extremely rapidly. This increases the duration of the star's collapse as the gravity is opposed by strong centrifugal forces.

One particularly peculiar way of creating the right conditions involves not a collapsing star but a star invaded by its black hole companion in a binary system. The black hole acts like a parasite, diving into the normal star, spinning it with gravitational forces on its way to the star's centre, and finally eating it from the inside.

"The neutrino model cannot explain very long gamma ray bursts and the Swift observations, as the rate at which the black hole swallows the star becomes rather low quite quickly, rendering the neutrino mechanism inefficient, but the magnetic mechanism can," says Professor Komissarov from the School of Mathematics at the University of Leeds.

"Our knowledge of the amount of the matter that collects around the black hole and the rotation speed of the star allow us to calculate how long these long flashes will be – and the results correlate very well with observations from satellites," he adds.

The research is published in the Monthly Notices of the Royal Astronomical Society and funded by the Science and Technology Facilities Council in the UK.


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Cite This Page:

University of Leeds. "Invading Black Holes Explain Cosmic Flashes." ScienceDaily. ScienceDaily, 19 September 2009. <www.sciencedaily.com/releases/2009/09/090918100015.htm>.
University of Leeds. (2009, September 19). Invading Black Holes Explain Cosmic Flashes. ScienceDaily. Retrieved January 26, 2015 from www.sciencedaily.com/releases/2009/09/090918100015.htm
University of Leeds. "Invading Black Holes Explain Cosmic Flashes." ScienceDaily. www.sciencedaily.com/releases/2009/09/090918100015.htm (accessed January 26, 2015).

Share This


More From ScienceDaily



More Space & Time News

Monday, January 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Water Fleas Prepare for Space Voyage

Water Fleas Prepare for Space Voyage

Reuters - Innovations Video Online (Jan. 26, 2015) Scientists are preparing a group of water fleas for a unique voyage into space. The aquatic crustaceans, known as Daphnia, can be used as a miniature model for biomedical research, and their reproductive and swimming behaviour will be tested for signs of stress while on board the International Space Station. Jim Drury went to meet the team. Video provided by Reuters
Powered by NewsLook.com
NASA's On Course To Take Pluto's Best Photo Ever

NASA's On Course To Take Pluto's Best Photo Ever

Newsy (Jan. 25, 2015) NASA&apos;s New Horizons probe is en route to snap a picture of Pluto this summer, but making sure it doesn&apos;t miss its one chance to do so starts now. Video provided by Newsy
Powered by NewsLook.com
Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Rosetta Captures Stunning Views, Diverse Data Of Comet 67P

Newsy (Jan. 23, 2015) The first images of the European Space Agency&apos;s Rosetta probe comet orbit could provide clues about its origin and how it got its unique shape. Video provided by Newsy
Powered by NewsLook.com
New Planets Could Be Lurking Far Beyond Neptune

New Planets Could Be Lurking Far Beyond Neptune

Newsy (Jan. 21, 2015) Scientists say planets located beyond Neptune could be altering the orbits of objects in the farthest reaches of our solar system. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins