Featured Research

from universities, journals, and other organizations

Biologically Active 'Scaffold' May Help Humans Replace Lost Or Missing Bone

Date:
October 24, 2009
Source:
Tel Aviv University
Summary:
Scientists have developed a biologically active "scaffold" made from soluble fibers which may help humans replace lost or missing bone.

Composite drug-releasing fibers used as basic elements of scaffolding for tissue and bone regeneration.
Credit: AFTAU

Mother Nature has provided the lizard with a unique ability to regrow body tissue that is damaged or torn ― if its tail is pulled off, it grows right back. She has not been quite so generous with human beings. But we might be able to come close, thanks to new research from Tel Aviv University.

Prof. Meital Zilberman of TAU's Department of Biomedical Engineering has developed a new biologically active "scaffold" made from soluble fibers, which may help humans replace lost or missing bone. With more research, she says, it could also serve as the basic technology for regenerating other types of human tissues, including muscle, arteries, and skin.

"The bioactive agents that spur bone and tissue to regenerate are available to us. The problem is that no technology has been able to effectively deliver them to the tissue surrounding that missing bone," says Prof. Zilberman. Her artificial and flexible scaffolding connects tissues together as it releases growth-stimulating drugs to the place where new bone or tissue is needed ― like the scaffolding that surrounds an existing building when additions to that building are made.

Scientific peer-reviewed research on this scaffold fiber has appeared in a number of journals, including Acta Biomaterialia, and is currently being licensed through Ramot, TAU's technology transfer company.

Active implants

The invention, which does not yet have a name, could be used to restore missing bone in a limb lost in an accident, or repair receded jawbones necessary to secure dental implants, says Prof. Zilberman. The scaffold can be shaped so the bone will grow into the proper form. After a period of time, the fibers can be programmed to dissolve, leaving no trace.

Her technology also has potential uses in cosmetic surgery. Instead of silicon implants to square the chin or raise cheekbones, the technology can be used to "grow your own" cheekbones or puffy lips. But Prof. Zilberman says it's far too early to think of such uses. She first started her work in biomaterials at the UT Southwestern Medical Center at Dallas, Texas, and currently is concentrating on various medical applications. One of them intends to make dental implants more effective. She envisions applying the invention to organ tissue regeneration in the future.

A question of structure

"Our material is very special," Prof. Zilberman explains. "The fibers not only support body parts like bones and arteries. They're also specially developed to release drugs and proteins in a controlled manner. Our special 3-D matrix can hold together drugs that are particularly vulnerable to breaking down easily. The matrix gives the body shape and form, coaxing it to re-grow and strengthen missing parts," she says.

Until now in vitro results on bone have been good, and some basic unpublished results from animal models have shown excellent promise for bone regeneration, says Prof. Zilberman. "It sounds simple, but it's not. It's quite difficult to develop a process for scaffold formation for bone growth. It's a delicate balance to apply only mild conditions that will not destroy the activity of the growth factor molecules."

Currently Prof. Zilberman has developed both a fibrous artificial scaffold and an organic scaffold which forms a film. The technology could also be applied to peripheral nerve regeneration. "Our fibers provide all the advantages that clinicians in tissue regeneration are calling for," says Prof. Zilberman. "Being thin, they're ideal when delicate scaffolds are called for. But they can also be the basic building blocks of bones and tissues when bigger structures are needed."


Story Source:

The above story is based on materials provided by Tel Aviv University. Note: Materials may be edited for content and length.


Cite This Page:

Tel Aviv University. "Biologically Active 'Scaffold' May Help Humans Replace Lost Or Missing Bone." ScienceDaily. ScienceDaily, 24 October 2009. <www.sciencedaily.com/releases/2009/10/091019122844.htm>.
Tel Aviv University. (2009, October 24). Biologically Active 'Scaffold' May Help Humans Replace Lost Or Missing Bone. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2009/10/091019122844.htm
Tel Aviv University. "Biologically Active 'Scaffold' May Help Humans Replace Lost Or Missing Bone." ScienceDaily. www.sciencedaily.com/releases/2009/10/091019122844.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Snack Attack: Study Says Action Movies Make You Snack More

Snack Attack: Study Says Action Movies Make You Snack More

Newsy (Sep. 2, 2014) You're more likely to gain weight while watching action flicks than you are watching other types of programming, says a new study published in JAMA. Video provided by Newsy
Powered by NewsLook.com
U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins