Featured Research

from universities, journals, and other organizations

High-performance Plasmas May Make Reliable, Efficient Fusion Power A Reality

Date:
November 12, 2009
Source:
American Physical Society
Summary:
In the quest to produce nuclear fusion energy, researchers from the DIII-D National Fusion Facility have recently confirmed long-standing theoretical predictions that performance, efficiency and reliability are simultaneously obtained in tokamaks, the leading magnetic confinement fusion device, operating at their performance limits.

Artist's rendering of a tokamak plasma. The plasma is confined by the combination of strong magnetic field in the toroidal direction (around the hole in the "donut" as shown by the black arrow) generated by external coils (not shown) and the magnetic field from a large current flowing in the same toroidal direction. The plasma is held inside a sealed metal structure that is evacuated and lined with special material to keep the plasma pure and handle the heat exhaust.
Credit: Image courtesy of American Physical Society

In the quest to produce nuclear fusion energy, researchers from the DIII-D National Fusion Facility have recently confirmed long-standing theoretical predictions that performance, efficiency and reliability are simultaneously obtained in tokamaks, the leading magnetic confinement fusion device, operating at their performance limits. Experiments designed to test these predictions have successfully demonstrated the interaction of these conditions.

These new findings will be presented at the American Physical Society -- Division of Plasma Physics 51st annual meeting, November 2-6, at the Atlanta Hyatt Regency Hotel.

Nuclear fusion energy has kept the sun burning for billions of years. When nuclear fusion occurs in a laboratory, power performance is determined by the temperature and density achieved by plasma, an ionized gas formed when hydrogen isotopes are heated to temperatures of over 10 million degrees Celsius. Because of these extreme temperatures, the hot plasma is confined by magnetic fields in a "tokamak", a donut-shaped device surrounded by powerful electromagnets.

Over the past decade, scientists have made tremendous progress toward realizing high pressures for increasingly long periods. A key element of recent experiments is the confirmation of theoretical predictions that one can rely on the walls of the tokamak chamber to improve plasma stability at high pressure.

Once plasma becomes sufficiently hot and dense, fusion occurs, producing large quantities of high-energy helium ions (known as alpha particles). For optimal efficiency, this self-generated heat must be well contained within the tokamak's "magnetic bottle." Models have predicted that the heat loss from the tokamak due to turbulence is quite sensitive to the exact details of the magnetic field configurations. Researchers recently found that turbulence is minimized in the same configuration necessary for achieving the highest pressures. Hence, performance and efficiency can be synergistic.

Interestingly, turbulent eddies in the plasma can also affect plasma heating by high-energy helium nuclei formed by the fusion of hydrogen atoms. Recent theoretical work suggests that these energetic particles not only feel turbulence differently, but can also stir up large eddies of their own. While these fine-scale turbulent eddies are predicted to cause negligibly small transport of energetic alpha particles, the new large eddies can increase this transport substantially. As the alpha particles cool, their transport becomes similar to the background level.

For high reliability, a tokamak needs to sustain the hot and dense plasma for as long as possible. Recent work has shown that tokamak plasmas can be induced to exhibit the following relationships: higher pressure => more self-generated electrical currents that help control the plasma => less reliance on external controls => longer pulse (including potentially steady-state) operation => higher reliability.

After decades of effort to improve the behavior and output of fusion plasmas, scientists are discovering that nature may actually be so kind as to simultaneously allow high performance (lots of electricity!), optimal efficiency (affordable!), and high reliability (the electrical outlet will always work!) in the design of future power plants. Work supported in part by the U.S. Department of Energy under contract DE-FC02-04ER54698.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "High-performance Plasmas May Make Reliable, Efficient Fusion Power A Reality." ScienceDaily. ScienceDaily, 12 November 2009. <www.sciencedaily.com/releases/2009/11/091102103327.htm>.
American Physical Society. (2009, November 12). High-performance Plasmas May Make Reliable, Efficient Fusion Power A Reality. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/11/091102103327.htm
American Physical Society. "High-performance Plasmas May Make Reliable, Efficient Fusion Power A Reality." ScienceDaily. www.sciencedaily.com/releases/2009/11/091102103327.htm (accessed July 31, 2014).

Share This




More Matter & Energy News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
Amid Drought, UCLA Sees Only Water

Amid Drought, UCLA Sees Only Water

AP (July 30, 2014) A ruptured 93-year-old water main left the UCLA campus awash in 8 million gallons of water in the middle of California's worst drought in decades. (July 30) Video provided by AP
Powered by NewsLook.com
Smartphone Powered Paper Plane Debuts at Airshow

Smartphone Powered Paper Plane Debuts at Airshow

AP (July 30, 2014) Smartphone powered paper airplane that was popular on crowdfunding website KickStarter makes its debut at Wisconsin airshow (July 30) Video provided by AP
Powered by NewsLook.com
U.K. To Allow Driverless Cars On Public Roads

U.K. To Allow Driverless Cars On Public Roads

Newsy (July 30, 2014) Driverless cars could soon become a staple on U.K. city streets, as they're set to be introduced to a few cities in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins