Featured Research

from universities, journals, and other organizations

Right first time: Pioneering new methods of drug manufacture

Date:
November 14, 2009
Source:
University of Leeds
Summary:
Engineers have developed a simple technology which can be used in existing chemical reactors to ensure "right first time" drug crystal formation.

Engineers at the University of Leeds have developed a simple technology which can be used in existing chemical reactors to ensure "right first time" drug crystal formation.

Related Articles


Ensuring drug crystals are formed correctly is crucial to their efficacy and the efficiency of pharmaceutical manufacturers' operations. Using self-assembled monolayers, the team has been able to show that crystals form into their desired product form with the correct shape and particle structure, without the usual problems of polymorphism which results in huge losses to the pharmaceutical sector each year.

"If you imagine the way that oil sits on top of water, that's similar to how the monolayer works," says Professor Kevin Roberts of University's Faculty of Engineering. "We've shown that we can produce a well-defined crystal structure using a self-assembled monolayer bound onto a metal substrate within a regular reactor. This is exciting stuff, because it's a relatively simple system, but could make a huge difference in the efficiency of drug manufacture."

One of the first stages of the crystallisation process is called nucleation. During nucleation, particles are introduced into a reactor to encourage the formation of crystals. However, the way in which this is currently carried out is difficult to control and can often lead to the wrong shape, size or structure of drug crystal, something which affects the usefulness and efficacy of the compound.

The new system proven to work by the Leeds team, working alongside Ana Kwokal from Croatian pharmaceutical company PLIVA, has shown that introducing a self-assembled monolayer -- a layer of self-organising molecules that is attractive to the substance being crystallised -- into a reactor enables consistent crystal formation.

Professor Roberts says: "Because this is a really simple solution to ensuring consistent crystallisation, it has huge potential commercially. Our next steps are to make sure it's just as efficient on an industrial scale."

This work draws on previous research and experimental systems developed through the Chemicals Behaving Badly II initiative, an Engineering and Physical Sciences Research Council (EPSRC) programme which includes universities and industrial partners.


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Cite This Page:

University of Leeds. "Right first time: Pioneering new methods of drug manufacture." ScienceDaily. ScienceDaily, 14 November 2009. <www.sciencedaily.com/releases/2009/11/091111092041.htm>.
University of Leeds. (2009, November 14). Right first time: Pioneering new methods of drug manufacture. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2009/11/091111092041.htm
University of Leeds. "Right first time: Pioneering new methods of drug manufacture." ScienceDaily. www.sciencedaily.com/releases/2009/11/091111092041.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins