Featured Research

from universities, journals, and other organizations

Bone implant offers hope for skull deformities

Date:
November 22, 2009
Source:
University of California - Davis
Summary:
A synthetic bone matrix offers hope for babies born with craniosynostosis, a condition that causes the plates in the skull to fuse too soon.

A synthetic bone matrix offers hope for babies born with craniosynostosis, a condition that causes the plates in the skull to fuse too soon. Implants replacing some of the infant's bone with the biodegradable matrix could eliminate some of the operations currently used to treat the condition.

Related Articles


"The remarkable thing about this is the finding that the composition of the matrix changes what the cells around it do. Cells begin producing natural drugs to drive bone healing in direct response to the composition of the bone matrix," said Kent Leach, professor of biomedical engineering at UC Davis.

The material is currently being tested in experiments with rats. Human trials will depend upon the success of tests in animals.

The human skull is not a smooth dome, but a patchwork of fused bones that resembles a soccer ball rather than an egg. At birth, the skull contains 45 separate pieces, joined by connective tissue, that slowly fuse together into solid bone. In most babies, this process keeps pace with brain growth, resulting in a normally shaped head.

However, one in every 2,000 babies is born with craniosynostosis, where the plates fuse and the skull becomes rigid. This leaves less room for the brain to grow, leading to developmental disabilities, and cranial and facial deformities.

In the standard surgery, surgeons remove fused bones, break them up and reposition some of the pieces along the edges to protect the brain. This usually slows the bone growth and allows the brain to grow. Nevertheless, 6 to 8 percent of babies will need a second operation and 25 percent of those will need yet a third operation.

Leach believes that the environment surrounding the cells might be sending the wrong instructions, causing cells to grow wrong. Leach's biodegradable implant is impregnated with stem cells from bone marrow and a synthetic version of hydroxyapatite, a chemical produced naturally in the body to stimulate bone growth. Once implanted, bone-forming cells enter the matrix. Leach's research with rats shows dense connective tissue, suggestive of bone formation, only eight weeks after implantation.

Leach hopes that his new matrix will encourage the growth of healthy tissue and eliminate the need for second and third surgeries. "The matrix will resorb over time, leaving only the child's own bone," he said.

Leach's work is funded by a grant from The Hartwell Foundation.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis. "Bone implant offers hope for skull deformities." ScienceDaily. ScienceDaily, 22 November 2009. <www.sciencedaily.com/releases/2009/11/091119194142.htm>.
University of California - Davis. (2009, November 22). Bone implant offers hope for skull deformities. ScienceDaily. Retrieved March 28, 2015 from www.sciencedaily.com/releases/2009/11/091119194142.htm
University of California - Davis. "Bone implant offers hope for skull deformities." ScienceDaily. www.sciencedaily.com/releases/2009/11/091119194142.htm (accessed March 28, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, March 28, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins