Featured Research

from universities, journals, and other organizations

Multiferroic compounds used to produce smaller and cheaper digital memories

Date:
December 2, 2009
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
Is it possible to make even more compact digital memories for portable electronic devices and which consume even less energy? Researchers have recently demonstrated that it is feasible, thanks to a new class of materials known as multiferroics, which combine unusual electric and magnetic properties.

Image of the ferroelectric domains of the multiferroic compound BiFeO3
Credit: Copyright A. Mougin, CNRS 2009

Is it possible to make even more compact digital memories for portable electronic devices and which consume even less energy? A team of CNRS and CEA researchers has recently demonstrated that it is feasible, thanks to a new class of materials known as multiferroics, which combine unusual electric and magnetic properties.

At a microscopic scale, atoms and molecules produce electric and magnetic fields. At our own scale, in the majority of crystals, the electric and magnetic properties of the various atoms offset one another and cancel each other out. Sometimes, however, this is not the case and in certain compounds, known as ferromagnetics, magnetic properties subsist at a macroscopic scale and can therefore act as a magnet. Less commonly, an electric order can exist at the macroscopic scale; such is the case with what are known as ferroelectric compounds. Even more rarely, electric and magnetic orders exist at one and the same time, as is the case with multiferroic materials. Moreover, in these materials, the electric and magnetic orders interact. Such interaction offers the opportunity of controlling the spins (the magnetic moments) of the atoms via an electric field, thus opening whole new perspectives particularly as regards information storage.

Researchers at the Laboratoire de Physique des Solides (CNRS/Université Paris-Sud 11), the Institut Rayonnement-Matière de Saclay (CEA Iramis) and the Institut Néel (CNRS) first synthesized the multiferroic compound BiFeO3 and then demonstrated the interaction between its electric and magnetic orders. They then produced a material formed of a layer of BiFeO3 and a ferromagnetic film and showed that they were able to modify the preferential orientation of the magnetization of the ferromagnetic film by applying an electric field. These pioneering results validate the concept of storing and writing magnetic data using an electric field.

In today's hard discs, data -- or bits -- are written using a magnetic field that directs the magnetization, which imposes the bit value. There are two possible magnetization states and thus two possible bit values (designated 0 or 1). With a multiferroic material, each memory element could be placed in four distinct states instead of two (two electrical polarization states and two magnetization states). Magnetic memories with two states (like existing memories), but which can be modified through the application of an electric field, could also be envisaged.

This possibility of writing and erasing data using an electric field constitutes a decisive advantage in mobile electronic devices (mobile phones, laptop computers, GPS, etc.) from two points of view. Firstly, the application of an electric field requires less energy than the application of a magnetic field and therefore batteries would last longer. Secondly, the electric field would be more local, which would mean more memory elements could be packed onto a given surface and thus enable component miniaturization to be pushed even further.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. D. Lebeugle, A. Mougin, M. Viret, D. Colson, L. Ranno. Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Physical Review Letters, 18 November 2009

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "Multiferroic compounds used to produce smaller and cheaper digital memories." ScienceDaily. ScienceDaily, 2 December 2009. <www.sciencedaily.com/releases/2009/11/091127123925.htm>.
CNRS (Délégation Paris Michel-Ange). (2009, December 2). Multiferroic compounds used to produce smaller and cheaper digital memories. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/11/091127123925.htm
CNRS (Délégation Paris Michel-Ange). "Multiferroic compounds used to produce smaller and cheaper digital memories." ScienceDaily. www.sciencedaily.com/releases/2009/11/091127123925.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins