Featured Research

from universities, journals, and other organizations

Mathematical model advances heart-related research

Date:
December 7, 2009
Source:
University of Iowa
Summary:
Using a new mathematical model of heart cells, investigators have shown how activation of a critical enzyme, calmodulin kinase II (CaM kinase), disrupts the electrical activity of heart cells. By targeting this enzyme's activity, it may be possible to prevent or treat heart disease and associated electrical rhythm disturbances.

Using a new mathematical model of heart cells, University of Iowa investigators have shown how activation of a critical enzyme, calmodulin kinase II (CaM kinase), disrupts the electrical activity of heart cells.

Related Articles


The study, which also involved Columbia University, was published online Dec. 3 in the journal PLoS Computational Biology.

"Recently, researchers have developed great interest in calmodulin kinase II as a critical regulator of the heart's response to injury. By targeting this enzyme's activity, it may be possible to prevent or treat heart disease and associated electrical rhythm disturbances," said Thomas Hund, Ph.D., associate in internal medicine at the University of Iowa Roy J. and Lucille A. Carver College of Medicine and the paper's senior author.

"CaM kinase is activated when the heart experiences injury, for example, when an artery providing blood to the heart becomes blocked. In the short-term, this increase in activity may be the heart's attempt to increase blood flow," Hund said. "However, unfortunately, the initial response results in a vicious cycle that likely advances heart disease."

In this study, the team analyzed tissue from injured hearts from animals, in which a coronary artery had been blocked. They found a dramatic increase in the levels of oxidized CaM kinase in specific heart regions where potentially lethal electrical activity occurs.

Using the mathematical model of the cardiac cell, the researchers were able to predict, through computer simulation, the effects of oxidized CaM kinase on cardiac electrical activity.

Oxidation activates the enzyme by modifying key chemical groups. In heart disease, oxidation is overactive, and CaM kinase is turned on too much.

"Oxidation appears to be a critical pathway for activation of CaM kinase in disease," Hund said. "Heart cells are very difficult to study, so improving our research tools -- as we did by creating the mathematical model -- is critical for generating new insight into heart disease mechanisms."

The study also included significant contributions from Peter Mohler, Ph.D., University of Iowa associate professor of internal medicine, Mark Anderson, M.D., Ph.D., University of Iowa professor and head of internal medicine, and Penelope Bodyen, Ph.D., professor of pharmacology, at Columbia University.


Story Source:

The above story is based on materials provided by University of Iowa. Note: Materials may be edited for content and length.


Cite This Page:

University of Iowa. "Mathematical model advances heart-related research." ScienceDaily. ScienceDaily, 7 December 2009. <www.sciencedaily.com/releases/2009/12/091204103753.htm>.
University of Iowa. (2009, December 7). Mathematical model advances heart-related research. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/12/091204103753.htm
University of Iowa. "Mathematical model advances heart-related research." ScienceDaily. www.sciencedaily.com/releases/2009/12/091204103753.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins