Featured Research

from universities, journals, and other organizations

New kind of micro-mobility: Microscopic system for moving tiny objects inside a microfluidic chip

Date:
December 15, 2009
Source:
Massachusetts Institute of Technology
Summary:
A new microscopic system could provide a novel method for moving tiny objects inside a microchip, and could also provide new insights into how cells and other objects are propelled around within the body.

Chains of superparamagnetic colloidal particles rotate to produce flows on length scales much larger than the chain dimensions, allowing them to behave like "micro-ants" that can move large particles.
Credit: Charles Sing

A new microscopic system devised by researchers in MIT's department of materials science and engineering could provide a novel method for moving tiny objects inside a microchip, and could also provide new insights into how cells and other objects are propelled around within the body.

Inside organs such as the trachea and the intestines, tiny hair-like filaments called cilia are constantly in motion, beating in unison to create currents that sweep along cells, nutrients, or other tiny particles. The new research uses a self-assembling system to mimic that kind of motion, providing a simple way to move particles around in a precisely controlled way.

Alfredo Alexander-Katz, the Toyota Career Development Assistant Professor of Materials Science and Engineering, and his doctoral student Charles Sing and other researchers, devised a system that uses tiny beads made of polymers with specks of magnetic material in them. With these beads suspended in a liquid, they applied a rotating magnetic field, which caused the beads to spontaneously form short chains which began spinning, creating currents that could then carry along surrounding particles -- even particles as much as 100 times larger than the beads themselves.

Alexander-Katz refers to the microscopic beads -- each just one micron (a millionth of a meter) in diameter -- as "micro-ants," because of their ability to move along while "carrying" objects so much larger than themselves. A paper describing the research appears the week of Dec. 14 in the Proceedings of the National Academy of Sciences.

The new method could provide a simpler, less-expensive alternative to present microfluidic devices, a field that is still in its early stages of development. Now, such devices require precisely made channels, valves and pumps created using microchip manufacturing methods, in order to control the movement of fluids through them. But the new system could offer such precise control over the movement of liquids and the particles suspended in them that it may be possible to dispense with the channels and other plumbing altogether, controlling the movements entirely through variations in the applied magnetic field.

In short, software rather than hardware could control the chip's properties, allowing it to be instantly reconfigured through changes in the controlling software -- and approach Alexander-Katz refers to as "virtual microfluidics." This could reduce the cost and increase the flexibility of the devices, which might be used for such things as biomedical screening or the detection of trace elements for pollution monitoring or security screening. It might also provide even finer spatial control than can presently be achieved using conventional channels on chips.

Alexander-Katz says the work might also help biologists better understand the way cilia work, by providing a way to mimic their activity in the lab. "People are still trying to understand how you get synchronization in the system" of cilia in organisms. "This might be a way to test many of the theories."

He says the way the chains of beads moved is a bit like a person trying to do cartwheels while standing on an icy surface. "As they rotate, they slip a bit," he says, "but overall, they keep moving," and this imparts a directional flow to the surrounding fluid.

Ultimately, such a system might someday even be developed to use in medical diagnostics, by allowing controlled delivery of particles inside the body to specifically targeted locations, for example while the patient is in a nuclear magnetic resonance (NMR) imaging system.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute of Technology. "New kind of micro-mobility: Microscopic system for moving tiny objects inside a microfluidic chip." ScienceDaily. ScienceDaily, 15 December 2009. <www.sciencedaily.com/releases/2009/12/091214151935.htm>.
Massachusetts Institute of Technology. (2009, December 15). New kind of micro-mobility: Microscopic system for moving tiny objects inside a microfluidic chip. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/12/091214151935.htm
Massachusetts Institute of Technology. "New kind of micro-mobility: Microscopic system for moving tiny objects inside a microfluidic chip." ScienceDaily. www.sciencedaily.com/releases/2009/12/091214151935.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins