Featured Research

from universities, journals, and other organizations

Physicists lay the groundwork for cooler, faster computing

Date:
December 15, 2009
Source:
University of Toronto
Summary:
Quantum optics researchers have discovered new behaviors of light within photonic crystals that could lead to faster optical information processing and compact computers that don't overheat.

University of Toronto quantum optics researchers Sajeev John and Xun Ma have discovered new behaviours of light within photonic crystals that could lead to faster optical information processing and compact computers that don't overheat.

"We discovered that by sculpting a unique artificial vacuum inside a photonic crystal, we can completely control the electronic state of artificial atoms within the vacuum," says Ma, a PhD student under John's supervision and lead author of a study published in a recent issue of Physical Review Letters. "This discovery can enable photonic computers that are more than a hundred times faster than their electronic counterparts, without heat dissipation issues and other bottlenecks currently faced by electronic computing."

"We designed a vacuum in which light passes through circuit paths that are one one-hundredth of the thickness of a human hair, and whose character changes drastically and abruptly with the wavelength of the light," says John. "A vacuum experienced by light is not completely empty, and can be made even emptier. It's not the traditional understanding of a vacuum."

"In this vacuum, the state of each atom -- or quantum dot -- can be manipulated with color-coded streams of laser pulses that sequentially excite and de-excite it in trillionths of a second. These quantum dots can in turn control other streams of optical pulses, enabling optical information processing and computing," says Ma.

The original aim of the investigation was to gain a deeper understanding of optical switching, part of an effort to develop an all-optical micro-transistor that could operate within a photonic chip. This led to the discovery of a new and unexpected dynamic switching mechanism, imposed by the artificial vacuum in a photonic crystal. The research also led to the discovery of corrections to one of the most fundamental equations of quantum optics known as the Bloch equation.

"This new mechanism enables micrometer scale integrated all-optical transistors to perform logic operations over multiple frequency channels in trillionths of a second at microwatt power levels, which are about one millionth of the power required by a household light bulb," says John. "That this mechanism allows for computing over many wavelengths as opposed to electronic circuits which use only one channel, would significantly surpass the performance of current day electronic transistors."

The research was funded with support from the Natural Sciences and Engineering Research Council of Canada, the Canadian Institute for Advanced Research, and the Ontario Premier's Platinum Research Fund.


Story Source:

The above story is based on materials provided by University of Toronto. Note: Materials may be edited for content and length.


Journal Reference:

  1. Ma et al. Ultrafast Population Switching of Quantum Dots in a Structured Vacuum. Physical Review Letters, 2009; 103 (23): 233601 DOI: 10.1103/PhysRevLett.103.233601

Cite This Page:

University of Toronto. "Physicists lay the groundwork for cooler, faster computing." ScienceDaily. ScienceDaily, 15 December 2009. <www.sciencedaily.com/releases/2009/12/091214173656.htm>.
University of Toronto. (2009, December 15). Physicists lay the groundwork for cooler, faster computing. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2009/12/091214173656.htm
University of Toronto. "Physicists lay the groundwork for cooler, faster computing." ScienceDaily. www.sciencedaily.com/releases/2009/12/091214173656.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com
New Corvette Can Secretly Record Convos And Get You Arrested

New Corvette Can Secretly Record Convos And Get You Arrested

Newsy (Sep. 28, 2014) The 2015 Corvette features valet mode – which allows the owner to secretly record audio and video – but in many states that practice is illegal. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins