Featured Research

from universities, journals, and other organizations

Keck telescopes gaze into young star's 'life zone'

Date:
December 25, 2009
Source:
NASA/Goddard Space Flight Center
Summary:
The inner regions of young planet-forming disks offer information about how worlds like Earth form, but not a single telescope in the world can see them. Yet, for the first time, astronomers using the W. M. Keck Observatory in Hawaii have measured the properties of a young solar system at distances closer to the star than Venus is from our sun.

MWC 419, also known as V594 Cas, is a young, blue variable star located 2,100 light years away in the constellation Cassiopeia.
Credit: DSS/STScI/AURUA

The inner regions of young planet-forming disks offer information about how worlds like Earth form, but not a single telescope in the world can see them. Yet, for the first time, astronomers using the W. M. Keck Observatory in Hawaii have measured the properties of a young solar system at distances closer to the star than Venus is from our sun.

"When it comes to building rocky planets like our own, the innermost part of the disk is where the action is," said team member William Danchi at NASA's Goddard Space Flight Center in Greenbelt, Md. Planets forming in a star's inner disk may orbit within its "habitable zone," where conditions could potentially support the development of life.

To achieve the feat, the team used the Keck Interferometer to combine infrared light gathered by both of the observatory's twin 10-meter telescopes, which are separated by 85 meters. The double-barreled approach gives astronomers the effective resolution of a single 85-meter telescope -- several times larger than any now planned.

"Nothing else in the world provides us with the types of measurements the Keck Interferometer does," said Wesley Traub at Caltech's Jet Propulsion Laboratory in Pasadena, Calif. "In effect, it's a zoom lens for the Keck telescopes."

In August 2008, the team -- led by Sam Ragland of Keck Observatory and including astronomers from the California Institute of Technology and the National Optical Astronomical Observatory -- observed a Young Stellar Object (YSO) known as MWC 419. The blue, B-type star has several times the sun's mass and lies about 2,100 light-years away in the constellation Cassiopeia. With an age less than ten million years, MWC 419 ranks as a stellar kindergartener.

The team also employed a new near-infrared camera designed to image wavelengths in the so-called L band from 3.5 to 4.1 micrometers. "This unique infrared capability adds a new dimension to the Keck Interferometer in probing the density and temperature of planet-forming regions around YSO disks. This wavelength region is relatively unexplored," Ragland explained. "Basically, anything we see through this camera is brand new information."

The increased ability to observe fine detail, coupled with the new camera, let the team measure temperatures in the planet-forming disk to within about 50 million miles of the star. "That's about half of Earth's distance from the sun, and well within the orbit of Venus," Danchi said.

For comparison, the planets directly detected around the stars HR 8799, Fomalhaut and GJ 758 orbit between 40 and 100 times farther away.

The team reported temperature measurements of dust at various regions throughout MWC 419's inner disk in the Sept. 20 issue of The Astrophysical Journal. Temperature differences help shed light on the inner disk's detailed structure and may indicate that its dust has different chemical compositions and physical properties, factors that may play a role in the types of planets that form. For example, conditions in our solar system favored the formation of rocky worlds from Mars sunward, whereas gas giants and icy moons assembled farther out.

In turn, the astronomers note, the size of the young star might affect the composition and physical characteristics of its dust disk. The team is continuing to use the Keck Interferometer in a larger program to observe planet-forming disks around sun-like stars.

The Keck Interferometer was developed by the Jet Propulsion Laboratory and the W.M. Keck Observatory. It is managed by the W.M. Keck Observatory, which operates two 10-meter optical/infrared telescopes on the summit of Mauna Kea on the island of Hawaii and is a scientific partnership of the California Institute of Technology, the University of California and NASA. NASA's Exoplanet Science Institute manages time allocation on the telescope for NASA.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Keck telescopes gaze into young star's 'life zone'." ScienceDaily. ScienceDaily, 25 December 2009. <www.sciencedaily.com/releases/2009/12/091223222226.htm>.
NASA/Goddard Space Flight Center. (2009, December 25). Keck telescopes gaze into young star's 'life zone'. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/12/091223222226.htm
NASA/Goddard Space Flight Center. "Keck telescopes gaze into young star's 'life zone'." ScienceDaily. www.sciencedaily.com/releases/2009/12/091223222226.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
How A Solar Flare Could Have Wrecked Earth's Electronics

How A Solar Flare Could Have Wrecked Earth's Electronics

Newsy (July 25, 2014) Researchers say if Earth had been a week earlier in its orbit around the sun, it would have taken a direct hit from a 2012 coronal mass ejection. Video provided by Newsy
Powered by NewsLook.com
Raw: ISS Cargo Ship Launches in Kazakhstan

Raw: ISS Cargo Ship Launches in Kazakhstan

AP (July 23, 2014) The Progress 56 cargo ship launched from the Baikonur Cosmodrome in Kazakhstan Wednesday. NASA says it will deliver cargo and crew supplies to the International Space Station. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins