Featured Research

from universities, journals, and other organizations

Electric field propels worms to test new drugs

Date:
January 6, 2010
Source:
McMaster University
Summary:
Researchers have developed a way to view the effects of a proposed drug treatment in real time using a mild electrical field to stimulate C. elegans nematodes. The discovery opens up significant possibilities for developing high-throughput micro-screening devices for drug discovery and other applications for treating diseases such as Huntington's, Parkinson's and muscular dystrophy.

(a) The application of +8 V cm-1 electric field (E) caused an animal (724 ΅m long) to move with the speed of 308 ΅m s-1 to the right towards the cathode. (b) At a lower field strength in a reverse direction (-3 V cm-1) the animal (847.5 ΅m long) moved with a speed of 342 ΅m s-1 to the left towards the cathode. Dark thick arrows illustrate the worm's position. Scale bars are 1 mm.
Credit: McMaster University

A Nobel-winning process for testing new drugs to treat diseases such as Huntington's, Parkinson's, and muscular dystrophy is getting an electrical charge.

Related Articles


Researchers at McMaster University have developed a way to propel and direct microscopic-sized worms (C. elegans nematodes) along a narrow channel using a mild electric field. The discovery opens up significant possibilities for developing high-throughput micro-screening devices for drug discovery and other applications.

"This is the first time that worms have been stimulated to move in a micro-channel device in a very precise and directed way," said Bhagwati Gupta, assistant professor of biology. "It will allow researchers to study in real time how a proposed drug affects neurons and muscles that control motion of a live specimen."

The research is described in the January 21, 2010 issue of Lab on a Chip, a leading international journal in the field of nanotechnology and bioengineering. The researchers demonstrate movement of the worms forward and in reverse inside a microchannel, guided by the direction of the electric field (electrotaxis).

"The electrotaxis of the worms has the potential to automate what is currently a slow, manual process for drug screening on worms," said Ravi Selvaganapathy, assistant professor of mechanical engineering. "The system is fairly easy and inexpensive to scale up to conduct rapid screening of tens of thousands of chemicals in worms to identify drug candidates in a cost-effective manner. Such discovery could accelerate clinical trials in people by allowing scientists to focus only on relevant drugs and would use limited resources more efficiently."

Currently, researchers observe worms individually under a microscope as they move in a random manner or in a direction forced by pressure. The new development retains a worm's natural motion and causes no harm to the worm.

A surprising observation was that the response of the worms was dependent on its age and neuronal development. This allows for large numbers of worms to be sorted and handled in an automated manner.

The findings promise to impact other research areas as well. It will allow researchers to study how neurons respond to electricity. It can also be used to fabricate new kinds of devices to handle and manipulate large numbers of worms.

The use of C. elegans as a genetic model organism was first undertaken by Sydney Brenner in 1974. He was presented with the Nobel Prize in Physiology or Medicine in 2002 for his work in this area. Researchers working with C. elegans were also awarded Nobel prizes in 2006 and 2008.

C. elegans is a proven animal model for the study of human diseases because it utilizes many of the same proteins and molecules as humans. It also has a generation time of approximately only four days and a lifespan of about two to three weeks. This accelerates the understanding of the function of disease-related proteins.


Story Source:

The above story is based on materials provided by McMaster University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pouya Rezai, Asad Siddiqui, Ponnambalam Ravi Selvaganapathy and Bhagwati P. Gupta. Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab on a Chip, 2010; 10 (2): 220 DOI: 10.1039/b917486a

Cite This Page:

McMaster University. "Electric field propels worms to test new drugs." ScienceDaily. ScienceDaily, 6 January 2010. <www.sciencedaily.com/releases/2010/01/100105150650.htm>.
McMaster University. (2010, January 6). Electric field propels worms to test new drugs. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2010/01/100105150650.htm
McMaster University. "Electric field propels worms to test new drugs." ScienceDaily. www.sciencedaily.com/releases/2010/01/100105150650.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) — The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) — Denisa Livingston, a health advocate for the Dinι Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) — The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins