Featured Research

from universities, journals, and other organizations

No-sweat pressure sensors

Date:
January 15, 2010
Source:
Fraunhofer-Gesellschaft
Summary:
Microelectronic chips used to take pressure readings are very delicate. A new technology has been developed that makes pressure sensors more robust, enabling them to continue operating normally at temperatures up to 250 degrees Celsius.

The new pressure sensor works at temperatures of up to 250 degrees Celsius.
Credit: Copyright Fraunhofer IMS

Microelectronic chips used to take pressure readings are very delicate. A new technology has been developed that makes pressure sensors more robust, enabling them to continue operating normally at temperatures up to 250 degrees Celsius.

The drill bit gradually burrows deeper into the earth, working its way through the rock. Meanwhile, dozens of sensors are busily engaged in tasks such as taking pressure readings and evaluating porosity. The conditions they face are extreme, with the sensors being required to withstand high temperatures and pressures as well as shocks and vibrations. The sensors send the data to the surface to help geologists with work such as searching for oil deposits.

Yet there is one major hurdle: on average, the pressure sensors can only withstand temperatures of between 80 and 125 degrees Celsius -- but at great depths the temperature is often significantly higher. The Fraunhofer Institute for Microelectronic Circuits and Systems IMS in Duisburg has come to the rescue, its researchers having developed a pressure sensor system that continues to function normally even at 250 degrees Celsius.

"The pressure sensors consist of two components that are located on a microelectronic chip or wafer," explains Dr. Hoc Khiem Trieu, department head at IMS. "The first component is the sensor itself, and the other component is the EEPROM." This is the element that stores all the readings together with the data required for calibration.

To enable the pressure sensor to function properly even at extremely high temperatures, the developers modified the wafer. While normal wafers tend to be made of monocrystalline silicon, the researchers chose silicon oxide for this application. "The additional oxide layer provides better electrical insulation," Trieu continues. "It prevents the leakage current that typically occurs at very high temperatures, which is the principal reason that conventional sensors fail when they reach a certain temperature."

The oxide layer enabled the researchers to improve the insulation of the memory component by three to four orders of magnitude. In theory, this should enable the pressure sensors to withstand temperatures of up to 350 degrees Celsius -- the researchers have provided practical proof of stability up to 250 degrees and are planning to conduct further studies at higher temperatures. In addition, the researchers are analyzing the prototypes of the pressure sensors in endurance tests.

There is a broad range of potential applications, with engineers hoping to use the high-temperature pressure sensors not only in the petrochemical environment, but also in automobile engines and geothermal applications.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "No-sweat pressure sensors." ScienceDaily. ScienceDaily, 15 January 2010. <www.sciencedaily.com/releases/2010/01/100113104249.htm>.
Fraunhofer-Gesellschaft. (2010, January 15). No-sweat pressure sensors. ScienceDaily. Retrieved July 29, 2014 from www.sciencedaily.com/releases/2010/01/100113104249.htm
Fraunhofer-Gesellschaft. "No-sweat pressure sensors." ScienceDaily. www.sciencedaily.com/releases/2010/01/100113104249.htm (accessed July 29, 2014).

Share This




More Matter & Energy News

Tuesday, July 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Lithium Battery 'Holy Grail' Could Provide 4 Times The Power

Newsy (July 28, 2014) Stanford University published its findings for a "pure" lithium ion battery that could have our everyday devices and electric cars running longer. Video provided by Newsy
Powered by NewsLook.com
The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Shipping Crates Get New 'lease' On Life

Shipping Crates Get New 'lease' On Life

Reuters - Business Video Online (July 25, 2014) Shipping containers have been piling up as America imports more than it exports. Some university students in Washington D.C. are set to get a first-hand lesson in recycling. Their housing is being built using refashioned shipping containers. Lily Jamali reports. Video provided by Reuters
Powered by NewsLook.com
Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins