Featured Research

from universities, journals, and other organizations

New fiber nanogenerators could lead to electric clothing

Date:
February 13, 2010
Source:
University of California - Berkeley
Summary:
In research that gives literal meaning to the term "power suit," engineers have created energy-scavenging nanofibers that could one day be woven into clothing and textiles. The technology could eventually lead to wearable "smart clothes" that can power hand-held electronics through ordinary body movements.

Shown is a fiber nanogenerator on a plastic substrate created by UC Berkeley scientists. The nanofibers can convert energy from mechanical stresses and into electricity, and could one day be used to create clothing that can power small electronics.
Credit: Chieh Chang, UC Berkeley

In research that gives literal meaning to the term "power suit," University of California, Berkeley, engineers have created energy-scavenging nanofibers that could one day be woven into clothing and textiles.

Related Articles


These nano-sized generators have "piezoelectric" properties that allow them to convert into electricity the energy created through mechanical stress, stretches and twists.

"This technology could eventually lead to wearable 'smart clothes' that can power hand-held electronics through ordinary body movements," said Liwei Lin, UC Berkeley professor of mechanical engineering and head of the international research team that developed the fiber nanogenerators.

Because the nanofibers are made from organic polyvinylidene fluoride, or PVDF, they are flexible and relatively easy and cheap to manufacture.

Although they are still working out the exact calculations, the researchers noted that more vigorous movements, such as the kind one would create while dancing the electric boogaloo, should theoretically generate more power. "And because the nanofibers are so small, we could weave them right into clothes with no perceptible change in comfort for the user," said Lin, who is also co-director of the Berkeley Sensor and Actuator Center at UC Berkeley.

The fiber nanogenerators are described in this month's issue of Nano Letters, a peer-reviewed journal published by the American Chemical Society.

The goal of harvesting energy from mechanical movements through wearable nanogenerators is not new. Other research teams have previously made nanogenerators out of inorganic semiconducting materials, such as zinc oxide or barium titanate. "Inorganic nanogenerators -- in contrast to the organic nanogenerators we created -- are more brittle and harder to grow in significant quantities," Lin said.

The tiny nanogenerators have diameters as small as 500 nanometers, or about 100 times thinner than a human hair and one-tenth the width of common cloth fibers. The researchers repeatedly tugged and tweaked the nanofibers, generating electrical outputs ranging from 5 to 30 millivolts and 0.5 to 3 nanoamps.

Furthermore, the researchers report no noticeable degradation after stretching and releasing the nanofibers for 100 minutes at a frequency of 0.5 hertz (cycles per second).

Lin's team at UC Berkeley pioneered the near-field electrospinning technique used to create and position the polymeric nanogenerators 50 micrometers apart in a grid pattern. The technology enables greater control of the placement of the nanofibers onto a surface, allowing researchers to properly align the fiber nanogenerators so that positive and negative poles are on opposite ends, similar to the poles on a battery.

Without this control, the researchers explained, the negative and positive poles might cancel each other out and reducing energy efficiency.

The researchers demonstrated energy conversion efficiencies as high as 21.8 percent, with an average of 12.5 percent.

"Surprisingly, the energy efficiency ratings of the nanofibers are much greater than the 0.5 to 4 percent achieved in typical power generators made from experimental piezoelectric PVDF thin films, and the 6.8 percent in nanogenerators made from zinc oxide fine wires," said the study's lead author, Chieh Chang, who conducted the experiments while he was a graduate student in mechanical engineering at UC Berkeley.

"We think the efficiency likely could be raised further," Lin said. "For our preliminary results, we see a trend that the smaller the fiber we have, the better the energy efficiency. We don't know what the limit is."

Other co-authors of the study are Yiin-Kuen Fuh, a UC Berkeley graduate student in mechanical engineering; Van H. Tran, a graduate student at the Technische Universitδt Mόnchen (Technical University of Munich) in Germany; and Junbo Wang, a researcher at the Institute of Electronics at the Chinese Academy of Sciences in Beijing, China.

The National Science Foundation and the Defense Advanced Research Projects Agency helped support this research.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Berkeley. "New fiber nanogenerators could lead to electric clothing." ScienceDaily. ScienceDaily, 13 February 2010. <www.sciencedaily.com/releases/2010/02/100212141246.htm>.
University of California - Berkeley. (2010, February 13). New fiber nanogenerators could lead to electric clothing. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2010/02/100212141246.htm
University of California - Berkeley. "New fiber nanogenerators could lead to electric clothing." ScienceDaily. www.sciencedaily.com/releases/2010/02/100212141246.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) — Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) — A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins