Featured Research

from universities, journals, and other organizations

Promising therapy for relapsing multiple sclerosis

Date:
February 18, 2010
Source:
University of Utah Health Sciences
Summary:
Scientists have found that adding a humanized monoclonal antibody called daclizumab to standard treatment reduces the number of new or enlarged brain lesions in patients with relapsing multiple sclerosis.

An international team of researchers has found that adding a humanized monoclonal antibody called daclizumab to standard treatment reduces the number of new or enlarged brain lesions in patients with relapsing multiple sclerosis. This new study was published online Feb. 16, 2010, and in the March edition of the Lancet Neurology.

Multiple sclerosis (MS) is a debilitating disease in which the body's immune system attacks the fatty substance that surrounds and protects the nerve fibers in the brain and spinal cord. The resulting damage interferes with the transmission of nerve signals between the brain and spinal cord and other parts of the body, producing a variety of symptoms including problems with balance, coordination, vision, and even mental function. Approximately 85 percent of multiple sclerosis patients are initially diagnosed with relapsing MS, in which clearly-defined attacks of worsening neurologic function are followed by partial or complete recovery periods during which no disease progression occurs.

"Previous research has shown that treatment with daclizumab reduced multiple sclerosis disease activity," says John W. Rose, M.D., professor of neurology at the University of Utah School of Medicine, Neurovirology Research Laboratory, Veterans Affairs Salt Lake City Health Care System and the University of Utah, an author on the study. "Our work in the CHOICE trial shows that daclizumab significantly reduces MS lesion formation in people with active relapsing disease."

Monoclonal antibodies are immune system proteins that preferentially bind to specific target cells, triggering the immune system to attack those cells. Daclizumab is a monoclonal antibody specific for CD25, a protein that is expressed on activated T cells, and binding of daclizumab to CD25 results in selective inhibition of these activated T cells. Daclizumab treatment has been studied in patients with human autoimmune conditions, such as MS, that are characterized by abnormal T-cell responses.

Rose and his colleagues performed a randomized, double-blind, placebo-controlled study at 51 centers in the U.S., Canada, Germany, Italy, and Spain. They recruited 230 patients with relapsing MS who were taking interferon beta and randomly assigned them to receive add-on treatment with high-dose daclizumab, low-dose daclizumab, or placebo. The primary objective of the study was to assess whether daclizumab affected MS disease activity by measuring the total number of new or enlarged lesions in the brain during 24 weeks of treatment.

In addition to finding that add-on treatment with high-dose daclizumab resulted in a significantly lower number of new or enlarged MS lesions, the researchers found that patients treated with either high- or low-dose daclizumab had a seven to eight times higher number of immune cells called CD56bright natural killer cells (NK Cells). Previous research has shown that untreated MS patients have lower numbers of these NK cells than healthy individuals.

"Several lines of evidence point to a potential function for CD56bright natural killer cells in regulating the immune system," explains Rose. "This study provides confirmatory data that daclizumab treatment causes an expansion of CD56bright natural killer cells and adds support to the theory that this expansion might mediate some of the effects of daclizumab on reducing multiple sclerosis lesion activity." Further research is needed to clarify whether the risk-benefit of daclizumab is better when the drug is used alone or in combination with interferon beta, as well as to determine the optimum dose and length of treatment needed to see the full therapeutic effects of the drug.

"The CHOICE trial showed that treatment with daclizumab was associated with both a significant reduction in MS lesion formation and a robust increase in important cells that help to regulate the immune system," concludes Rose. "Combined with previous research, these two findings strongly support further study of daclizumab as a clinical treatment for multiple sclerosis."


Story Source:

The above story is based on materials provided by University of Utah Health Sciences. Note: Materials may be edited for content and length.


Cite This Page:

University of Utah Health Sciences. "Promising therapy for relapsing multiple sclerosis." ScienceDaily. ScienceDaily, 18 February 2010. <www.sciencedaily.com/releases/2010/02/100216140307.htm>.
University of Utah Health Sciences. (2010, February 18). Promising therapy for relapsing multiple sclerosis. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/02/100216140307.htm
University of Utah Health Sciences. "Promising therapy for relapsing multiple sclerosis." ScienceDaily. www.sciencedaily.com/releases/2010/02/100216140307.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins