Featured Research

from universities, journals, and other organizations

Treating neonatal meningitis: Is nitric oxide a foe or a friend to bacteria?

Date:
February 24, 2010
Source:
American Journal of Pathology
Summary:
Nitric oxide plays a key role in the pathogenesis of meningitis; however, it remains unclear whether it plays a pro- or anti-microbial role.

Current research suggests that nitric oxide may play a role in the pathogenesis of neonatal meningitis.

A new report on the topic appears in the March 2010 issue of The American Journal of Pathology.

Bacterial meningitis, or inflammation of the membranes that cover the brain and spinal cord, is often fatal, even when treated with antibiotics. In neonates, mortality occurs in 25 to 35% of all patients, and long-term neurological and psychological effects are reported in up to 50% of survivors. One of the most common causes of neonatal meningitis is a serotype of Escherichia coli that expresses the capsular antigen K1, which is similar in structure to proteins expressed in the brain.

Nitric oxide plays a key role in the pathogenesis of meningitis; however, it remains unclear whether it plays a pro- or anti-microbial role. To determine the role of inducible nitric oxide synthase (iNOS), responsible for the production of nitric oxide, in meningitis, a group led by Dr. Nemani Prasadarao of the Childrens Hospital Los Angeles examined the effects of E. coli K1 infection in brains of neonatal mice. They found that E. coli K1 infection induced nitric oxide due to the activation of iNOS and that mice deficient in iNOS were resistant to E. coli infection. In addition, treatment with the iNOS-specific inhibitor aminoguanidine cleared the pathogen from circulation and prevented brain damage, likely via increased uptake and killing of bacteria by immune cells. Therefore iNOS inhibition may provide a new therapeutic strategy for treating neonatal E. coli-induced meningitis.

Mittal et al conclude that "further understanding of the complex interactions between E. coli K1 and macrophages are important to the identification of novel interventional strategies that can improve the outcome of this deadly disease." Since these studies showed that the prevention of nitric oxide production by E. coli also suppressed the production of inflammatory cytokines, inhibition of nitric oxide might also be used as a therapeutic strategy for the prevention of sepsis. In future studies, Dr. Prasdarao and colleagues intend to "develop small molecule inhibitors that prevent the interaction of E. coli with its receptor on various cells and thereby reduce the production of nitric oxide."

This work was supported by the National Institutes of Health grant AI40567.


Story Source:

The above story is based on materials provided by American Journal of Pathology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Mittal et al. Inhibition of Inducible Nitric Oxide Controls Pathogen Load and Brain Damage by Enhancing Phagocytosis of Escherichia coli K1 in Neonatal Meningitis. American Journal Of Pathology, 2010; DOI: 10.2353/ajpath.2010.090851

Cite This Page:

American Journal of Pathology. "Treating neonatal meningitis: Is nitric oxide a foe or a friend to bacteria?." ScienceDaily. ScienceDaily, 24 February 2010. <www.sciencedaily.com/releases/2010/02/100224083050.htm>.
American Journal of Pathology. (2010, February 24). Treating neonatal meningitis: Is nitric oxide a foe or a friend to bacteria?. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/02/100224083050.htm
American Journal of Pathology. "Treating neonatal meningitis: Is nitric oxide a foe or a friend to bacteria?." ScienceDaily. www.sciencedaily.com/releases/2010/02/100224083050.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins