Featured Research

from universities, journals, and other organizations

Single photons step into the slow light

Date:
February 25, 2010
Source:
ICT Results
Summary:
Experts in nanotechnology, optoelectronics and quantum physics have advanced the generation, detection and manipulation of single photons in semiconductors. Their discoveries bring practical single-photon and quantum applications significantly closer.

European experts in nanotechnology, optoelectronics and quantum physics have advanced the generation, detection and manipulation of single photons in semiconductors. Their discoveries bring practical single-photon and quantum applications significantly closer.

Related Articles


The ultimate in semiconductor miniaturisation is to use single photons and electrons to carry and manipulate information in the form of quantum bits or qubits. Researchers from some of Europe's leading universities, public research institutes and industry-based labs have combined forces under the aegis of the EU-funded QPHOTON project to create new semiconductor-based devices that reliably and efficiently emit, detect and allow the manipulation of single photons.

"Current single-photon sources are not very useful in terms of efficiency and quality," says Johann Reithmaier, the coordinator of QPHOTON. "We set out to address this -- to strongly improve the efficiency of producing single photons without any background of other photons."

The suite of devices QPHOTON developed may enable multiple applications including low power, highly integrated photonic circuits; practical quantum cryptography and teleportation; and, eventually, new routes to realise ultra-powerful quantum computers.

Pillars, cavities and (quantum) dots

One of the consortium's key goals was to improve the assembly and control of semiconductor-based quantum dots.

Quantum dots are nano-sized structures that can confine electrons in three dimensions. By manipulating the size, shape and composition of the dots, researchers can gain very fine control over their electronic and optical properties, for example triggering them electronically to emit single photons.

Until now, most quantum dots have been grown through self-assembly, which leaves the dots scattered randomly in a solution or across a surface.

The QPHOTON researchers devised a way to grow quantum dots exactly where they wanted them by first etching minute holes in a semiconductor substrate. Still, getting the dots to have the precise properties the team wanted turned out to be a major challenge. "The primary layer was optically dead," says Reithmaier, so we needed additional tricks to overcome this."

The researchers developed a series of cleaning and deposition steps that allowed them to grow high-functioning dots where they wanted them, and, in the process, achieved a new record in terms of the density of quantum-dot spacing.

More importantly, however, the researchers were able to link those quantum dots to other nano-structures in order to enhance and exploit their properties. They found ways to combine the precisely spaced dots with minute vertical pillars and horizontally aligned microcavities, both of which emitted single photons far more efficiently and reliably than the previous state of the art.

The pillars emit light perpendicularly to the surface of the semiconductor. They can be used as robust sources of single photons, which could for example be coupled to optical fibres for long-distance transmission.

The horizontal microcavities are extremely promising as key parts of highly integrated circuits that would use photons rather than electrons to process information. The researchers also developed an innovative vertical photonic crystal assembly to extract single photons from these circuits with more than 80 percent efficiency.

Another major innovation was the development of "photonic wires" -- precisely assembled linear structures that advanced the state of the art by a factor of two in terms of the efficiency of transmitting single photons. "Pushing the coupling efficiency to about 85 percent is a major breakthrough for single photon emitters," says Reithmaier.

This advance is particularly promising for the secure distribution of quantum keys, which enable ultra-secure data transmission. Only by sending one photon at a time can information be transmitted without any risk of it being compromised.

Slowing light to a crawl

For the past ten years, researchers worldwide have been avidly exploring the field of slow light. A variety of nano-structures have been found to have the ability to slow light dramatically. Engineers hope to use this effect to create memories, buffers and switches for high-powered, energy-efficient optical computers.

The QPHOTON researchers chalked up another first by demonstrating a strong slow light effect in a semiconductor quantum dot material.

Most previous research with slow light used media -- gas for example -- that would not be useful in actual computers. So showing that quantum dot arrays can slow light in a semiconductor is potentially very important for optical computing.

Reithmaier cautions that the ability of slow light to carry enough information to support optical data processing has not yet been demonstrated, and may turn out not to be possible. Still, QPHOTON's findings will be utilised in a new EU-funded project aimed at further exploring the potentials of slow light.

Reithmaier believes that the steps they've taken to control the emission, manipulation, and reception of single photons bring practical quantum computers significantly closer.

"The major challenge is to move quantum information from one location to another, and a major approach is single photons," he says. "For that you need full control of the photon, and that's where we really pushed the technology."

The QPHOTON project received funding from the FET -- Open strand of the EU's Sixth Framework Programme for research.


Story Source:

The above story is based on materials provided by ICT Results. Note: Materials may be edited for content and length.


Cite This Page:

ICT Results. "Single photons step into the slow light." ScienceDaily. ScienceDaily, 25 February 2010. <www.sciencedaily.com/releases/2010/02/100225123614.htm>.
ICT Results. (2010, February 25). Single photons step into the slow light. ScienceDaily. Retrieved April 18, 2015 from www.sciencedaily.com/releases/2010/02/100225123614.htm
ICT Results. "Single photons step into the slow light." ScienceDaily. www.sciencedaily.com/releases/2010/02/100225123614.htm (accessed April 18, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, April 18, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com
Tackling Congestion in the World's Worst Traffic City

Tackling Congestion in the World's Worst Traffic City

Reuters - News Video Online (Apr. 16, 2015) New transportation system and regulations aim to resolve gridlock in Jakarta, which has been named the city with the world&apos;s worst traffic. Angie Teo reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins