Featured Research

from universities, journals, and other organizations

Molecular imaging technique uses ultrasound and microscopic bubbles to target cancer cells

Date:
March 6, 2010
Source:
Society of Nuclear Medicine
Summary:
An imaging technique combining ultrasound and specially modified contrast agents may allow researchers to noninvasively detect cancer and show its progression. The technique enables researchers to visualize tumor activity at the molecular level.

An imaging technique combining ultrasound and specially modified contrast agents may allow researchers to noninvasively detect cancer and show its progression, according to research published in the March issue of The Journal of Nuclear Medicine (JNM). The technique enables researchers to visualize tumor activity at the molecular level.

Related Articles


"We hope this technique might be helpful for the early detection of disease," said Juergen K. Willmann, M.D., lead author of the study and assistant professor of radiology at Stanford University School of Medicine. "It may help save lives by finding cancer -- such as breast, ovarian or pancreatic cancer -- in the very early stages, when it is still curable."

In the study, researchers intravenously injected microbubbles -- gas-filled spheres small enough to travel through vessels -- into mice with cancers. The microbubbles, which were paired with a new peptide (a molecule that consists of a chain of amino acids), were designed to travel through the vascular system and attach to integrin -- a well-characterized molecular marker that acts as a "red flag" for tumor vessel growth, or angiogenesis. Tumor vessel growth occurs when active tumor cells create certain pathways to provide the tumor with a sufficient supply of oxygen, nutrients and other factors needed for growth.

Once the gas-filled microbubbles seek out the cancers and attach to their vessel walls, they send out strong signals that are picked up by standard clinical ultrasound scanners. The imaging signals produced by the microbubbles are reflected back to the ultrasound transducer and illuminate the areas that outline the tumor, thus providing researchers with a sonogram of tumor vessel growth on a molecular level.

"Ultrasound holds great promise for the application of molecular imaging because it is widely available, relatively inexpensive and safe. There is no exposure to radiation and repetitive imaging is not a concern," said Dr. Willmann. "Furthermore, the targeted microbubbles have great potential for translation from bench to bedside -- which will be explored in future studies," said Sanjiv Gambhir, M.D., Ph.D., director of the molecular imaging program at Stanford.

Contrast-enhanced ultrasound can be used to image blood perfusion in organs, to measure blood flow rate in the heart and other organs and to perform other applications -- such as characterization of focal lesions in the liver. Current interest is focused on modifying contrast agents to make them specifically useful for molecular imaging. The microbubbles, paired with the new peptide that binds to tumor vessel cells as studied in the current research, may be more effective than antibody molecules, which are time-intensive to produce, are costly and may cause adverse reactions in patients.

Noninvasive imaging strategies such as the one described in the JNM study may be particularly helpful for diagnosing cancer in its earliest stages as well as for developing therapeutic agents to treat cancer and monitoring whether treatment is working.


Story Source:

The above story is based on materials provided by Society of Nuclear Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Willmann et al. Targeted Contrast-Enhanced Ultrasound Imaging of Tumor Angiogenesis with Contrast Microbubbles Conjugated to Integrin-Binding Knottin Peptides. Journal of Nuclear Medicine, 2010; DOI: 10.2967/jnumed.109.068007

Cite This Page:

Society of Nuclear Medicine. "Molecular imaging technique uses ultrasound and microscopic bubbles to target cancer cells." ScienceDaily. ScienceDaily, 6 March 2010. <www.sciencedaily.com/releases/2010/03/100301102751.htm>.
Society of Nuclear Medicine. (2010, March 6). Molecular imaging technique uses ultrasound and microscopic bubbles to target cancer cells. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/03/100301102751.htm
Society of Nuclear Medicine. "Molecular imaging technique uses ultrasound and microscopic bubbles to target cancer cells." ScienceDaily. www.sciencedaily.com/releases/2010/03/100301102751.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins