Featured Research

from universities, journals, and other organizations

How muscle cells control fatty acid uptake

Date:
March 16, 2010
Source:
Karolinska Institutet
Summary:
A new study shows that the blood vessels and muscles of the heart can regulate the uptake of fatty acids that we ingest through meat, milk products and other food. The researchers have also identified the way in which regulation is governed by the muscles themselves. The results open the way for new forms of treatment for pathological fat accumulation in the muscles which, in turn, increases the risk of type 2 diabetes and cardiovascular disease.

A new study from the Swedish medical university Karolinska Institutet shows that the blood vessels and muscles of the heart can regulate the uptake of fatty acids that we ingest through meat, milk products and other food. The researchers behind the study have also identified the way in which regulation is governed by the muscles themselves.

Related Articles


The results, which are published in the scientific journal Nature, open the way for new forms of treatment for pathological fat accumulation in the muscles which, in turn, increases the risk of type II (adult) diabetes and cardiovascular disease.

Previous research has shown that the extreme, pathological accumulation of fat in the muscles is an important contributory factor to the development of insulin resistance and type II diabetes. It is therefore important to understand and control how the uptake of fat from the blood is regulated. The function of the blood vessels in this process has remained largely unexplored despite the fact that fatty acids must be transported through the cells of the vascular walls before they can be taken up and metabolised by the working muscles.

In this present study, the researchers examined the biological function of the VEGF-B protein, which signals from the muscles to the blood vessel walls. They were able to show that levels of VEGF-B correlate to the mitochondrial content and energy status of the muscles. Further, the researchers showed that VEGF-B can control levels of fatty acid transport proteins (FATPs) in the vascular wall. VEGF-B signalling from the muscles to these cells led to an increase in FATPs and thus a greater intake of fat through the vascular walls.

"Mice that lacked either the VEGF-B protein or its receptors in the walls of the blood vessels had a lower intake of fat to the muscles and the heart, and less accumulation of fat in the different tissues," says associate professor Ulf Eriksson, who led the study at Karolinska Institutet´s Department of Medical Biochemistry and Biophysics. "Instead, we found that the residual fat accumulated in the white adipose tissue, causing a slight weight increase in the mice."

However, their most striking finding was that the mice that lacked VEGF-B, and that consequently had lower muscular fat uptake, increased the uptake of sugar to the heart. Since insulin resistance and type II diabetes in humans are characterised by high glucose levels and the reduced uptake of sugar to the muscles, it is hoped that these results can one day be developed into new treatments for several metabolic diseases, including type II diabetes.

"There´s a well-known correlation between fat accumulation in muscle tissue and insulin resistance and adult diabetes," says Dr Eriksson. "We are now making rigorous efforts to examine how we can affect insulin signalling and reduce the level of blood glucose in diabetic mice by blocking VEGF-B signalling."

Apart from Dr Eriksson´s research team at Karolinska Institutet, the study involved researchers from Uppsala and Gothenburg universities, Sahlgrenska University Hospital, Karolinska University Hospital and the University of Kuopio, Finland. Dr Eriksson is also associated with the Ludwig Institute for cancer research at Karolinska Institutet.


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Carolina E. Hagberg, Annelie Falkevall, Xun Wang, Erik Larsson, Jenni Huusko, Ingrid Nilsson, Laurens A. van Meeteren, Erik Samen, Li Lu, Maarten Vanwildemeersch, Joakim Klar, Guillem Genove, Kristian Pietras, Sharon Stone-Elander, Lena Claesson-Welsh, Seppo Yla-Herttuala, Per Lindahl & Ulf Eriksson. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature, 2010; DOI: 10.1038/nature08945

Cite This Page:

Karolinska Institutet. "How muscle cells control fatty acid uptake." ScienceDaily. ScienceDaily, 16 March 2010. <www.sciencedaily.com/releases/2010/03/100315103934.htm>.
Karolinska Institutet. (2010, March 16). How muscle cells control fatty acid uptake. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/03/100315103934.htm
Karolinska Institutet. "How muscle cells control fatty acid uptake." ScienceDaily. www.sciencedaily.com/releases/2010/03/100315103934.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins