Featured Research

from universities, journals, and other organizations

New brain nerve cells key to stress resilience

Date:
April 1, 2010
Source:
UT Southwestern Medical Center
Summary:
Researchers have found new clues that might help explain why some people are more susceptible to stress than others.

UT Southwestern Medical Center researchers have found new clues that might help explain why some people are more susceptible to stress than others.

In a study of mice, the researchers determined that weeks after experiencing a stressful event, animals that were more susceptible to stress exhibited enhanced neurogenesis -- the birth of new nerve cells in the brain. Specifically, the cells that these animals produced after a stressful event survived longer than new brain cells produced by mice that were more resilient.

In addition, when researchers prevented neurogenesis in both stress-susceptible and resilient mice, the animals previously susceptible to stress became more resilient.

"This work shows that there is a period of time during which it may be possible to alter memories relevant to a social situation by manipulating adult-generated nerve cells in the brain," said Dr. Amelia Eisch, associate professor of psychiatry at UT Southwestern and senior author of the study, available in the Proceedings of the National Academy of Sciences. "This could eventually lead to a better understanding of why, in humans, there is an enormous variety of responses to stressful situations."

Mice that are susceptible to stress exhibit long-lasting social avoidance and depressive-like behavior after experiencing a stressful event, such as being placed in a cage with a more aggressive mouse. Resilient mice behave more like unstressed control animals. This animal model is commonly used in studies of stress and depression, as understanding the changes in the brain and behavior of the mice can shed light on stress-induced changes in the human brain and in human behavior.

In the study, the brain cells of both groups of mice responded in similar ways after a stressful event. But weeks later, researchers found that mice displaying social avoidance had more nerve cells in a region of the brain called the hippocampus that survived the stressful event than mice that were more resilient.

The study is the first to link the memory of a social experience with neurogenesis in the hippocampus, Dr. Eisch said. Recently, Dr. Eisch and her team have linked adult neurogenesis with addiction. Previously, neurogenesis was primarily associated with spatial learning and memory.

In this study, Dr. Eisch and her colleagues exposed some mice to social defeat by having the animals live in the same cage as larger, aggressor mice for five minutes a day, and in the same cage but with a barrier in place the rest of the day. Researchers then tested the mice to see if they were susceptible to stress.

The researchers labeled the new cells of susceptible and unsusceptible mice so they could see how the cells divided. Both types of mice produced fewer dividing cells immediately after stress, but in the long run, mice susceptible to stress had more new adult cells than unsusceptible and control mice, who lived in cages with nonaggressor mice.

Dr. Eisch and her colleagues also used radiation to prevent hippocampal neurogenesis in all groups of mice. Mice susceptible to stress stopped producing new nerve cells and didn't display social avoidance in the long term.

Inhibiting social avoidance also had detrimental effects, however.

"Radiation in susceptible mice led to behavior that might be interpreted as harmful, such as approaching a potential aggressor mouse instead of avoiding it. We hypothesize that the survival of new nerve cells may be a compensatory event in the brain to allow the mouse to remember a socially relevant aggressor," Dr. Eisch said. "We are very eager to see if these results carry over to other models of stress in animals and to explore the mechanisms underlying these changes, as these are critical steps to understanding how adult-generated neurons might be modulated to help humans in stressful situations."

Future studies also will help determine which genes are involved with increased survival of new nerve cells in mice susceptible to stress, Dr. Eisch said.

Other UT Southwestern researchers participating in this study were Nathan DeCarolis, student research assistant in psychiatry and Shveta Malhotra, senior research associate in psychiatry. Others involved in the work were lead author Dr. Diane Lagace, former instructor of psychiatry, now at the University of Ottawa, as well as investigators from the University of Pennsylvania School of Medicine and Mount Sinai School of Medicine.

The study was supported by the National Institutes of Health, NASA, the National Alliance for Research on Schizophrenia and Depression, and the Canadian Institutes of Health Research.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Lagace et al. Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proceedings of the National Academy of Sciences, 2010; 107 (9): 4436 DOI: 10.1073/pnas.0910072107

Cite This Page:

UT Southwestern Medical Center. "New brain nerve cells key to stress resilience." ScienceDaily. ScienceDaily, 1 April 2010. <www.sciencedaily.com/releases/2010/03/100331080859.htm>.
UT Southwestern Medical Center. (2010, April 1). New brain nerve cells key to stress resilience. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/03/100331080859.htm
UT Southwestern Medical Center. "New brain nerve cells key to stress resilience." ScienceDaily. www.sciencedaily.com/releases/2010/03/100331080859.htm (accessed October 22, 2014).

Share This



More Mind & Brain News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Movies Might Desensitize Violence For Parents, Not Just Kids

Movies Might Desensitize Violence For Parents, Not Just Kids

Newsy (Oct. 20, 2014) A study suggests that parents become desensitized to violent movies as well as children, which leads them to allow their kids to view violent films. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins