Featured Research

from universities, journals, and other organizations

Experimental explanation of supercooling: Why water does not freeze in the clouds

Date:
April 23, 2010
Source:
European Synchrotron Radiation Facility
Summary:
Supercooling, a state where liquids don't solidify even below their normal freezing point, still puzzles scientists today. An example of this phenomenon is found everyday in meteorology: clouds in high altitude are an accumulation of supercooled droplets of water below their freezing point. Scientists in France have now found an experimental explanation of the phenomenon of supercooling.

Droplet of a gold-silicon liquid alloy on a silicon (111) surface. Pentagonal clusters formed at the interface exhibit a denser structure compared to solid gold and prevent the liquid from crystallization at temperatures as low as 300 Kelvin below the solidification temperature.
Credit: Graphics by M. Collignon

Supercooling, a state where liquids do not solidify even below their normal freezing point, still puzzles scientists today. A good example of this phenomenon is found everyday in meteorology: clouds in high altitude are an accumulation of supercooled droplets of water below their freezing point.

Scientists from the Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), the Centre National de Recherche Scientifique (CNRS) and the ESRF have found an experimental explanation of the phenomenon of supercooling. Their research is published today in Nature.

Supercooled liquids are trapped in a metastable state even well below their freezing point, which can only be achieved in liquids that do not contain seeds that may trigger crystallization. Clouds at high altitude are a good example for this: they contain tiny droplets of water that, in the absence of seed crystals do not form ice despite the low temperatures. In everyday life, though, there is usually some crystalline impurity in contact with the liquid that will trigger the crystallization process, and therefore the freezing. Controlling solidification behaviour is important for applications ranging from hail prevention up to technological processes such as welding and casting or even the growth of semiconductor nanostructures.

Supercooling was discovered already in 1724 by Fahrenheit, but even today the phenomenon remains a subject for intense discussions. Over the last 60 years the very existence of deep supercooling has led to speculations that the internal structure of liquids could be incompatible with crystallization. Models propose that a significant fraction of the atoms in liquids arrange in five-fold coordinated clusters. To form a crystal however, one needs a structure that can be repeated periodically, filling the entire space. This is not possible with five-fold coordinated clusters. In the two-dimensional analogue, a plane cannot be filled by pentagons only, whereas triangles, rectangles or hexagons can fill a plane perfectly. In this example, pentagons are an obstacle to crystallization.

Until today there was no experimental proof that this five-fold coordinated structures are at the origin of supercooling. The researchers from the CEA, CNRS and ESRF studied the structure of a particular liquid, a gold-silicon alloy, in contact with a specially decorated silicon (111) surface, where the outermost layer of the solid featured pentagonal atomic arrangements. Their findings confirmed that a strong supercooling effect took place. "We studied what happened to the liquid in contact with a five-fold coordinated surface," explains Tobias Schülli, first author of the paper. The team performed the control experiment with the same liquid exposed to three-fold and four-fold coordinated surfaces, which reduced the supercooling effect dramatically. "This constitutes the first experimental proof that pentagonal order is at the origin of supercooling," explains Tobias Schülli.

It was during their studies, originally focusing on the growth of semiconducting nanowires, that the scientists discovered the unusual properties of these liquids. As they were observing the first stage of growth of nanowires, they could see that the metal-semiconductor alloy they used remained liquid at a much lower temperature than its crystallization point and so they decided to investigate this phenomenon. These liquid alloys are popular in applied research as they enable the growth of sophisticated semiconductor nanostructures at low growth temperatures. Most of these nanowire structures are grown on silicon (111), the same surface used by the team. Semiconducting nanowires are promising candidates for future electronic devices. Prominent examples are solar cells, where scientists are working on the integration of silicon nanowires in order to increase their performance.


Story Source:

The above story is based on materials provided by European Synchrotron Radiation Facility. Note: Materials may be edited for content and length.


Journal References:

  1. T. U. Schülli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond & A. Pasturel. Substrate-enhanced supercooling in AuSi eutectic droplets. Nature, 2010; 464: 1174-1177 DOI: 10.1038/nature08986
  2. A. Lindsay Greer. Materials science: A cloak of liquidity. Nature, 2010; 464: 1137-1138 DOI: 10.1038/4641137a

Cite This Page:

European Synchrotron Radiation Facility. "Experimental explanation of supercooling: Why water does not freeze in the clouds." ScienceDaily. ScienceDaily, 23 April 2010. <www.sciencedaily.com/releases/2010/04/100421133114.htm>.
European Synchrotron Radiation Facility. (2010, April 23). Experimental explanation of supercooling: Why water does not freeze in the clouds. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/04/100421133114.htm
European Synchrotron Radiation Facility. "Experimental explanation of supercooling: Why water does not freeze in the clouds." ScienceDaily. www.sciencedaily.com/releases/2010/04/100421133114.htm (accessed July 25, 2014).

Share This




More Matter & Energy News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) — Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) — TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) — Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) — When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins