Featured Research

from universities, journals, and other organizations

Intestinal immune response

Date:
May 10, 2010
Source:
American Journal of Pathology
Summary:
Researchers have found that development of intestinal lymphoid follicles (ILFs) is dependent on dendritic cell recruitment.

Researchers led by Dr. Rodney D. Newberry at the University of Washington, St. Louis, MO have found that development of intestinal lymphoid follicles (ILFs) is dependent on dendritic cell recruitment. They report their data in the May 2010 issue of The American Journal of Pathology.

Related Articles


Lymphoid tissues such as lymph nodes both host immune cells and serve as filters or traps for foreign and infectious antigens. These tissues are fully formed at birth. One type of lymphoid tissue, ILFs, is instrumental in the immune response against intestinal pathogens. However, in contrast to other lymphoid tissues, ILFs are induced by environmental stimuli from microorganisms in the intestinal lumen. Indeed, the formation of these tissues is fully reversible.

In an effort to further understand the development of ILFs, McDonald et al discovered that intestinal microbes recruited clusters of dendritic cells, immune cells that present antigen to other cells, to ILFs. Moreover, depletion of these immune cells resulted in regression of ILFs. Indeed, ILF differentiation was dependent on the cell-migration molecule CXCL13, which is expressed by ILF dendritic cells. Taken together, these data indicate that dendritic cell recruitment plays a key role in ILF development and function, perhaps through the secretion of CXCL13.

Dr. Newberry's group "suggest[s] that like other cellular components of [solitary intestinal lymphoid tissues], [dendritic cells] perform dual functions by shaping their microenvironment and generating immune responses."


Story Source:

The above story is based on materials provided by American Journal of Pathology. Note: Materials may be edited for content and length.


Journal Reference:

  1. McDonald KG, McDonough JS, Dieckgraefe BK, Newberry RD. Dendritic Cells Produce CXCL13 and Participate in the Development of Murine Small Intestine Lymphoid Tissues. American Journal Of Pathology, 2010; 176 (5): 2367 DOI: 10.2353/ajpath.2010.090723

Cite This Page:

American Journal of Pathology. "Intestinal immune response." ScienceDaily. ScienceDaily, 10 May 2010. <www.sciencedaily.com/releases/2010/05/100510141340.htm>.
American Journal of Pathology. (2010, May 10). Intestinal immune response. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/05/100510141340.htm
American Journal of Pathology. "Intestinal immune response." ScienceDaily. www.sciencedaily.com/releases/2010/05/100510141340.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins