Featured Research

from universities, journals, and other organizations

Engineers design power structures that help keep the lights on

Date:
May 13, 2010
Source:
Iowa State University
Summary:
Engineers are developing new and improved poles to carry electricity across the countryside. They say the new structures -- which can bend and deflect an extreme load -- would be cheaper, easier to install, more secure and more resistant to cascading failures. That means better electrical service for everybody.

Iowa State University's Jon "Matt" Rouse, left, and Casey Faber have designed a new kind of power pole that would be more reliable and cost effective than the current generation of transmission poles, such as this old-style structure just east of campus.
Credit: Photo by Bob Elbert

The metal poles that carry power lines across the country are built to take whatever blows at them. So they're big and round and sturdy -- as much as 12 feet in diameter and 100 feet high.

But transmission poles can still fail under the stress of extreme ice and wind. They could also be vulnerable to an infrastructure attack. And when one of them falls, others are pulled down until heavy dead-end structures stop the cascading collapse.

"There are long stretches of these transmission lines across the countryside," said Jon "Matt" Rouse, an Iowa State University assistant professor of civil, construction and environmental engineering. "If you take down one of the poles, you take 10 miles of poles out with it. It's very important to protect these structures."

Rouse has worked with Casey Faber, a graduate student in civil engineering, to design a new kind of pole that not only resists cascading failures, but is cheaper and easier to use.

Rouse and Faber have designed hinged poles that don't need a crane for installation, so they'd be easier to raise. If they're exposed to an extreme load, they could be repaired rather than replaced. They would resist cascading failures so utilities could do away with the expensive dead-end structures. And, they would allow power companies to provide better and more reliable service.

Rouse and Faber said the key was to take a new approach to structural design.

"We're designing a structure based primarily on its deformation ability rather than its strength," Rouse said.

The result is a nominally rectangular pole with a built-in hinge near the base. There are metal plates on either side of the hinge that act as replaceable structural fuses -- they stretch and buckle when the pole sustains an extreme load, allowing it to deflect while shielding the rest of the pole from damage. There are also tendon cables running up and down the inside of the pole that resist stretching and work to keep the pole upright. And so when there's a failure, the fuses bend, the hinge pivots, the interior cables tighten and nearby poles are allowed to pick up some of the load.

"If a structure can deform sufficiently, it can allow the rest of the system to use reserve strength from other structures," Rouse said. "It allows the next pole down the line to share the load of ice, wind, a broken line or an attack, rather than forcing one pole to withstand the load on its own."

Rouse and Faber have used support from Iowa State's Electric Power Research Center to successfully test a prototype pole and are working to secure a patent. They also say the utility and power structure industries have expressed interest in their technology.

The time is right for better power structures, Rouse said.

"The country is in the midst of a major shift toward wind power," he said. "We'll be building a lot of transmission lines over the next 20 years. We really need to address these reliability and security issues."


Story Source:

The above story is based on materials provided by Iowa State University. Note: Materials may be edited for content and length.


Cite This Page:

Iowa State University. "Engineers design power structures that help keep the lights on." ScienceDaily. ScienceDaily, 13 May 2010. <www.sciencedaily.com/releases/2010/05/100511173823.htm>.
Iowa State University. (2010, May 13). Engineers design power structures that help keep the lights on. ScienceDaily. Retrieved July 27, 2014 from www.sciencedaily.com/releases/2010/05/100511173823.htm
Iowa State University. "Engineers design power structures that help keep the lights on." ScienceDaily. www.sciencedaily.com/releases/2010/05/100511173823.htm (accessed July 27, 2014).

Share This




More Matter & Energy News

Sunday, July 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins