Featured Research

from universities, journals, and other organizations

Discarded data may be gateway to new brain insights

Date:
May 25, 2010
Source:
Washington University School of Medicine
Summary:
Scientists regularly discard up to 90 percent of the signals from monitoring of brain waves, one of the oldest techniques for observing changes in brain activity. Now, though, researchers have found evidence that these data may contain significant information about how the brain works.

Scientists regularly discard up to 90 percent of the signals from monitoring of brain waves, one of the oldest techniques for observing changes in brain activity. They discard this data as noise because it produces a seemingly irregular pattern like those seen in river fluctuations, seismic waves, heart rates, stock market prices and a wide variety of other phenomena.

Related Articles


Now, though, researchers at Washington University School of Medicine in St. Louis have found evidence that these data may contain significant information about how the brain works. In a study published in the May 13 Neuron, a closer look reveals not only previously unrecognized patterns in the data but also shows that putting the brain to work on a simple task can change those patterns.

"We don't yet know how to decode the information contained in these signals, but the fact that they're such a large part of brain activity and that they can be modulated when you do a task suggests that they are going to be very important to understanding the brain," says lead author Biyu Jade He, PhD, a postdoctoral fellow.

Electroencephalography (EEG), a long-established technique for monitoring brain waves, involves attaching an array of electrodes to the head. The electrodes can detect minute changes in electrical fields caused by brain cells firing.

Routine EEG analysis, used both in basic research and in clinical contexts such as epilepsy and sleep disorders, focuses on periodic components of EEG activity that are caused by millions of brain cells firing in coordination. These components are known as brain waves, and they occur at varying frequencies. Slow waves during sleep, for example, occur about once per second.

The remaining, irregular signals in EEG recordings didn't seem to contain useful information. By using a mathematical technique called spectral analysis, neuroscientists have found that these "irregular" signals produce a regular pattern: a diagonal line on the results graph that goes from the upper left (high-power, low-frequency brain waves) to the lower right (low-power, high-frequency brain waves).

That didn't seem interesting because spectral analyses of many other phenomena produce the same pattern. In linguistics, for example, analysis of the most frequently used words in a language and the number of times they appear in a typical text produces a similar diagonal line. Analyzing changes in stock market prices versus how fast they change, or the power and frequency of waves of seismic energy also produces similar results.

"Why this pattern is so common is one of the great questions of modern physics, and it's spawned a relatively young field of research called complex dynamics," says Biyu He. "With the exception of a few labs, though, this hasn't been given much consideration in neuroscience."

She studied data gathered from five patients with drug-resistant epilepsy. To treat these patients, surgeons temporarily implant grids of electrodes on the surface of the brain, allowing them to gather detailed EEG readings and pinpoint the source of the seizures for surgical removal.

Using a technique called nested-frequency analysis, she showed that the temporal connections between low-frequency brain waves and high-frequency brain waves are more extensive than previously realized.

"These temporal connections reach outside of the domains of periodic brain waves that neuroscientists study and into the irregular, arrhythmic brain activity that we discard," she explains. "This suggests that there are patterns of temporal organization in those irregular signals. Those patterns may reflect important aspects of brain architecture and function."

Next, scientists asked six patients with electrode implants to press a button either in response to a cue or at random time intervals that they chose. During these experiments, Biyu He identified changes in the power spectrum of this irregular brain activity in brain regions involved in performing the tasks.

"Given that this statistical pattern of activity is so common in the world around us, it makes sense that evolution would mold our brains into a similar organization, and that our cultural activities, such as language or the stock market, would reflect that pattern," she speculates.

Biyu He completed her doctorate in neuroscience in the laboratory of Marcus Raichle, MD, professor of neurology, of radiology and of neurobiology. Raichle, a coauthor on the Neuron paper, pioneered approaches to the study of brain function at rest that have revealed significant insights into what researchers had previously regarded as noise.

"The noisy activity of the brain at rest and in the background when we perform tasks actually represents the majority of what the brain is really doing" Raichle says. "We know this to be the case when we measure the cost of running the brain and find that this background activity accounts for most of it. Biyu's pioneering research is a major step forward in helping us understand how this background activity is organized."

Funding from the National Institutes of Health supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. He BJ, Zempel JM, Snyder AZ, Raichle ME. The temporal structures and functional significance of scale-free brain activity. Neuron, 2010; 66 (3): 353-369 DOI: 10.1016/j.neuron.2010.04.020

Cite This Page:

Washington University School of Medicine. "Discarded data may be gateway to new brain insights." ScienceDaily. ScienceDaily, 25 May 2010. <www.sciencedaily.com/releases/2010/05/100512125228.htm>.
Washington University School of Medicine. (2010, May 25). Discarded data may be gateway to new brain insights. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2010/05/100512125228.htm
Washington University School of Medicine. "Discarded data may be gateway to new brain insights." ScienceDaily. www.sciencedaily.com/releases/2010/05/100512125228.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins