Featured Research

from universities, journals, and other organizations

Stripes offer clues to superconductivity

Date:
May 20, 2010
Source:
American Physical Society
Summary:
Magnetic stripes hint at the origin of superconductivity in ceramics.

A probe measuring the penetration depth of a magnetic field into a high-temperature superconductor reveals stripes that hint at a connection between crystal boundaries and superconductor quality.
Credit: B. Kalisky, J.R. Kirtley, J.G. Analytis, Jiun-Haw Chu, A. Vailionis1, I.R. Fisher and K.A. Moler

New images of iron-based superconductors are providing telltale clues to the origin of superconductivity in a class of ceramic materials known as pnictides. The images reveal that electrons responsible for the superconducting currents in some pnictides tend to flow primarily along the boundaries between the crystal grains that make up the superconductors.

Related Articles


The research, which is reported in a pair of papers appearing in the current issue of the journal Physical Review B, may help physicists to find new superconducting compounds that can carry current without the electrical resistance that plagues conventional metal conductors.

In order to identify the stripes that represent regions with dense superconducting currents, a group of Stanford University researchers measured the depth that magnetic fields penetrated into a superconducting sample. When exposed to a magnetic field, currents in a superconductor flow in a way that creates a field inside the material that is the opposite of the applied field. When added together, the applied and internal fields cancel each other out inside the superconductor. Essentially, it's as if the superconductor prevents a magnetic field from penetrating it (this is the source of the Meissner effect, which allows strong magnets to levitate over a superconductor). The better the superconductor, the more completely it can exclude a magnetic field. By scanning an iron-pnictide superconductor with a probe that measures the depth that a magnetic field penetrates the material, the researchers could determine the regions where superconducting currents are strongest.

Unlike metal superconductors, which require temperatures close to absolute zero in order to operate, pnictides and many superconductors that function at higher temperatures (typically 10 to 135 degrees above absolute zero) are ceramics that are built of crystal grains. Although the underlying mechanisms are not clear, measurements of magnetic field penetration indicate that superconducting currents flow best along the boundaries between the crystals.

In a Viewpoint appearing in the current edition of APS Physics, John Tranquada of Brookhaven National Laboratory points out that identifying the connection between crystal boundaries and superconductivity should help us to develop better high temperature superconductors. Ultimately, superconductors operating closer to room temperature could help save energy by reducing the inefficiencies that comes with transporting electricity. In addition, high temperature superconductors could be handy for creating powerful magnets for medical imaging and various industrial applications, as well as potentially leading to high speed computers and other novel electronic devices.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Journal References:

  1. B. Kalisky, J. R. Kirtley, J. G. Analytis, Jiun-Haw Chu, A. Vailionis, I. R. Fisher, and K. A. Moler. Stripes of increased diamagnetic susceptibility in underdoped superconducting Ba(Fe1-xCox)2As2 single crystals: Evidence for an enhanced superfluid density at twin boundaries. Phys. Rev. B, 81, May 17, 2010 DOI: 10.1103/PhysRevB.81.184513
  2. John R. Kirtley, Beena Kalisky, Lan Luan, and Kathryn A. Moler. Meissner response of a bulk superconductor with an embedded sheet of reduced penetration depth. Phys. Rev. B, 81, 184514 (2010) DOI: 10.1103/PhysRevB.81.184514
  3. Modulated superfluid density in an iron-pnictide superconductor John M. Tranquada. Modulated superfluid density in an iron-pnictide superconductor. Phys. Rev. B, Physics 3, 41 (2010) DOI: 10.1103/Physics.3.41

Cite This Page:

American Physical Society. "Stripes offer clues to superconductivity." ScienceDaily. ScienceDaily, 20 May 2010. <www.sciencedaily.com/releases/2010/05/100517111916.htm>.
American Physical Society. (2010, May 20). Stripes offer clues to superconductivity. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/05/100517111916.htm
American Physical Society. "Stripes offer clues to superconductivity." ScienceDaily. www.sciencedaily.com/releases/2010/05/100517111916.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins