Featured Research

from universities, journals, and other organizations

Mechanism explains complications associated with diabetes

Date:
June 24, 2010
Source:
Cell Press
Summary:
New research uncovers a molecular mechanism that links diabetes with an increased risk of cardiovascular problems and sudden cardiac death. The study finds that high blood sugar prevents vital communication between the brain and the autonomic nervous system, which controls many involuntary activities in the body.

New research uncovers a molecular mechanism that links diabetes with an increased risk of cardiovascular problems and sudden cardiac death. The study, published by Cell Press in the June 24 issue of the journal Neuron, finds that high blood sugar prevents vital communication between the brain and the autonomic nervous system, which controls many involuntary activities in the body.

Related Articles


"Diseases, such as diabetes, that disturb the function of the autonomic nervous system cause a wide range of abnormalities that include poor control of blood pressure, cardiac arrhythmias, and digestive problems," explains senior study author Dr. Ellis Cooper from McGill University in Montreal. "In most people with diabetes, the malfunction of the autonomic nervous system adversely affects their quality of life and shortens life expectancy."

To investigate why the autonomic nervous system malfunctions in diabetics, Dr. Cooper and colleagues examined the transmission of electrical signals from the brain to autonomic neurons. The brain communicates with autonomic neurons at synapses, a small gap between two nerve cells where electrical signals from one nerve cell are sent to the next by chemical neurotransmitters. "In healthy individuals, synaptic transmission in the autonomic nervous system is strong and stable; however, if synapses on these neurons malfunction due to some disease process, the link between the nervous system and the periphery becomes disrupted," says Dr. Cooper.

Using a mouse model of diabetes, the researchers discovered that high blood sugar elevates reactive oxygen species in autonomic neurons and causes a disruption in synaptic transmission between the brain and the autonomic neurons. The researchers went on to show that this elevation in reactive oxygen species inactivates the neurotransmitter receptors at these synapses causing synaptic transmission to fail.

"Our work provides a new explanation for diabetic-induced disruptions of the autonomic nervous system," concludes Dr. Cooper. "We show that an early step leading to autonomic abnormalities in diabetes is a depression in synaptic transmission triggered by events downstream of high blood sugar and reactive oxygen species. This synaptic depression is apparent as early as 1 week after the onset of diabetes and becomes more severe over time."

The researchers include Veronica Campanucci, McGill University, Montreal, Quebec, Canada; Arjun Krishnaswamy, McGill University, Montreal, Quebec, Canada; and Ellis Cooper, McGill University, Montreal, Quebec, Canada.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Journal Reference:

  1. Verσnica Campanucci, Arjun Krishnaswamy, Ellis Cooper. Diabetes Depresses Synaptic Transmission in Sympathetic Ganglia by Inactivating nAChRs through a Conserved Intracellular Cysteine Residue. Neuron, 2010; 66 (6): 827-834 DOI: 10.1016/j.neuron.2010.06.010

Cite This Page:

Cell Press. "Mechanism explains complications associated with diabetes." ScienceDaily. ScienceDaily, 24 June 2010. <www.sciencedaily.com/releases/2010/06/100623123340.htm>.
Cell Press. (2010, June 24). Mechanism explains complications associated with diabetes. ScienceDaily. Retrieved March 1, 2015 from www.sciencedaily.com/releases/2010/06/100623123340.htm
Cell Press. "Mechanism explains complications associated with diabetes." ScienceDaily. www.sciencedaily.com/releases/2010/06/100623123340.htm (accessed March 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Could a $34 Smartphone Device Improve HIV Diagnosis in Africa?

Reuters - Innovations Video Online (Feb. 27, 2015) — A dongle that plugs into a Smartphone mimics a lab-based blood test for HIV and syphilis and can detect the diseases in 15 minutes, say researchers. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Doctor Says Head Transplants Possible Within Two Years

Doctor Says Head Transplants Possible Within Two Years

Buzz60 (Feb. 27, 2015) — An Italian doctor is saying he could stick someone&apos;s head onto someone else&apos;s body. Patrick Jones (@Patrick_E_Jones) reports. Video provided by Buzz60
Powered by NewsLook.com
How Your Dentist Could Help Screen You For Diabetes

How Your Dentist Could Help Screen You For Diabetes

Newsy (Feb. 27, 2015) — A new study from researchers at New York University suggests dentists could soon use blood samples taken from patients&apos; mouths to test for diabetes. Video provided by Newsy
Powered by NewsLook.com
The Best Tips to Makeover Your Health

The Best Tips to Makeover Your Health

Buzz60 (Feb. 27, 2015) — If you&apos;re looking to boost your health this season, there are a few quick and easy steps to prompt you for success. Krystin Goodwin (@Krystingoodwin) has the best tips to give your health a makeover this spring! Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins