Featured Research

from universities, journals, and other organizations

Bursting bubbles with sound offers new treatments for cancer

Date:
June 28, 2010
Source:
University of Leeds
Summary:
A new way to deliver cancer drugs using gas bubbles and sound waves is being developed. The project will enable highly toxic drugs to be delivered in small doses directly to tumors, where their toxicity can safely be put to good use. If successful, the technique could easily be adapted for other diseases.

A new way to deliver cancer drugs using gas bubbles and sound waves is to be developed at the University of Leeds. The project will enable highly toxic drugs to be delivered in small doses directly to tumours, where their toxicity can safely be put to good use. If successful, the technique could easily be adapted for other diseases.

The project brings together engineers, physicists, chemists and cancer specialists from across the University to work on the new technique. The research will use existing chemotherapy drugs to gain initial proof of concept before adapting the delivery mechanism for use with novel therapeutics being developed at the University to treat colorectal cancer.

Tiny gas-filled bubbles just a 1000nth of a millimetre across are already used in medicine to provide a clearer image on ultrasound scanners, because, when they are injected into the bloodstream, they reflect a stronger signal than the surrounding tissue. However, certain ultrasound signals will burst the bubbles and it is this phenomenon that the researchers plan to exploit as a clever cancer treatment.

The researchers will attach the drug to microbubbles, along with antibodies that are attracted to the tumour to make the bubbles congregate at the tumour site. Ultrasound will then be applied to the site at the correct frequency, and when the bubbles burst a manageable but effective dose of the drug will be released. An added benefit is that ultrasound can also temporarily rupture cell membranes, helping to get the drug into the cells where it can be most effective.

Lead researcher Professor Stephen Evans says: "A number of research teams are looking at possible uses for microbubbles, but with the breadth of expertise available at Leeds we're in a good position to make a breakthrough. For the technique to be a viable clinical and commercial option, we not only need to find a reliable way to attach the drugs and antibodies, we also need to be able to manufacture the bubbles in sufficient numbers, of the right size and with consistent properties."

Working on the ultrasound side of the project is Dr Steven Freear from the University's Faculty of Engineering. He is looking at how specially coded ultrasound waves interact with the microbubbles generated by Professor Evans' team. The aim is to control the delivery of therapeutic drugs to specific localised sites and encourage their uptake within cells.

"The ultrasound wave makes the bubbles resonate, vibrate and finally burst. By changing how we code the electrical excitation signal, we can image and verify how many bubbles are at the site to ensure we administer the right drug dose before we burst them." explains Dr Freear. "This means we can use ultrasound, not only to detect and image the microbubbles, but critically to rupture them, delivering the drug payload in a controlled way."

The bubbles are made from lipids filled with a heavy 'fluorocarbon' gas, which has the advantage of not dissolving easily in the bloodstream, thereby ensuring the bubbles stay intact until they reach the correct location. One of the aims of the project, funded through the Engineering and Physical Sciences Research Council, is to develop a machine that can manufacture the bubbles at an industrial scale for use in clinical practice.

"Current manufacturing methods basically shake up a liquid to create the bubbles but the majority of those aren't the correct size and so have little therapeutic value," explains Professor Evans. "This method is fine for bubbles used in imaging where the components are is cheap, but once you start using expensive drugs and antibodies, it's no longer viable. We have some prototype machines we're working on and hope through the project to bring them closer to commercialisation."

Researchers from the Leeds Institute of Molecular Medicine with expertise in colorectal cancer will develop and verify the effectiveness of the treatment in cell culture and mouse models. If successful, the team will look for further funding to take the work on towards clinical trials.

Professor Evans and Dr Freear will be joined in the research by Dr Neil Thomson from Physics, and Professor Sir Alex Markham, Dr Pam Jones, Dr Louise Coletta, Dr Tony Evans from Medicine and Professor Bushby from Chemistry. The project also involves specialist companies Epigem, Precision Acoustics and Weidlinger Associates and the charity, Leeds and West Riding Medical Research.


Story Source:

The above story is based on materials provided by University of Leeds. Note: Materials may be edited for content and length.


Cite This Page:

University of Leeds. "Bursting bubbles with sound offers new treatments for cancer." ScienceDaily. ScienceDaily, 28 June 2010. <www.sciencedaily.com/releases/2010/06/100628124819.htm>.
University of Leeds. (2010, June 28). Bursting bubbles with sound offers new treatments for cancer. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/06/100628124819.htm
University of Leeds. "Bursting bubbles with sound offers new treatments for cancer." ScienceDaily. www.sciencedaily.com/releases/2010/06/100628124819.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins