Featured Research

from universities, journals, and other organizations

With magnetic nanoparticles, scientists remotely control neurons and animal behavior

Date:
July 6, 2010
Source:
University at Buffalo
Summary:
Clusters of heated, magnetic nanoparticles targeted to cell membranes can remotely control ion channels, neurons and even animal behavior, according to a new study.

Research on magnetic nanoparticles by UB doctoral student Heng Huang (right) and UB physics professor Arnd Pralle could lead to disease treatments that remotely manipulate proteins or cells.
Credit: Image courtesy of University at Buffalo

Clusters of heated, magnetic nanoparticles targeted to cell membranes can remotely control ion channels, neurons and even animal behavior, according to a paper published by University at Buffalo physicists in Nature Nanotechnology.

The research could have broad application, potentially resulting in innovative cancer treatments that remotely manipulate selected proteins or cells in specific tissues, or improved diabetes therapies that remotely stimulate pancreatic cells to release insulin.

The work also could be applied to the development of new therapies for some neurological disorders, which result from insufficient neuro-stimulation.

"By developing a method that allows us to use magnetic fields to stimulate cells both in vitro and in vivo, this research will help us unravel the signaling networks that control animal behavior," says Arnd Pralle, PhD, assistant professor of physics in the UB College of Arts and Sciences and senior/corresponding author on the paper.

The UB researchers demonstrated that their method could open calcium ion channels, activate neurons in cell culture and even manipulate the movements of the tiny nematode, C. elegans.

"We targeted the nanoparticles near what is the 'mouth' of the worms, called the amphid," explains Pralle. "You can see in the video that the worms are crawling around; once we turn on the magnetic field, which heats up the nanoparticles to 34 degrees Celsius, most of the worms reverse course. We could use this method to make them go back and forth. Now we need to find out which other behaviors can be controlled this way." The video is available on YouTube at: http://www.youtube.com/watch?v=u9MqrLcLaCk

The worms reversed course once their temperature reached 34 degrees Celsius, Pralle says, the same threshold that in nature provokes an avoidance response. That's evidence, he says, that the approach could be adapted to whole-animal studies on innovative new pharmaceuticals.

The method the UB team developed involves heating nanoparticles in a cell membrane by exposing them to a radiofrequency magnetic field; the heat then results in stimulating the cell.

"We have developed a tool to heat nanoparticles and then measure their temperature," says Pralle, noting that not much is known about heat conduction in tissue at the nanoscale.

"Our method is important because it allows us to only heat up the cell membrane. We didn't want to kill the cell," he said. "While the membrane outside the cell heats up, there is no temperature change in the cell."

Measuring just six nanometers, the particles can easily diffuse between cells. The magnetic field is comparable to what is employed in magnetic resonance imaging. And the method's ability to activate cells uniformly across a large area indicates that it also will be feasible to use it in in vivo whole body applications, the scientists report.

In the same paper, the UB scientists also report their development of a fluorescent probe to measure that the nanoparticles were heated to 34 degrees Celsius.

"The fluorescence intensity indicates the change in temperature," says Pralle, "it's kind of a nanoscale thermometer and could allow scientists to more easily measure temperature changes at the nanoscale."

Pralle and his co-authors are active in the Molecular Recognition in Biological Systems and Bioinformatics and the Integrated Nanostructure Systems strategic strengths, identified by the UB 2020 strategic planning process.

In addition to Pralle, who has an adjunct position in the Department of Physiology and Biophysics in UB's School of Medicine and Biomedical Sciences, co-authors are Heng Huang and Savas Delikanli, both doctoral students in the UB Department of Physics, Hao Zeng, PhD, associate professor in the physics department, and Denise M. Ferkey, PhD, assistant professor in the UB Department of Biological Sciences.

The research was supported by the National Science Foundation and the UB 2020 Interdisciplinary Research Development Fund.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. Heng Huang, Savas Delikanli, Hao Zeng, Denise M. Ferkey, Arnd Pralle. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotechnology, 2010; DOI: 10.1038/nnano.2010.125

Cite This Page:

University at Buffalo. "With magnetic nanoparticles, scientists remotely control neurons and animal behavior." ScienceDaily. ScienceDaily, 6 July 2010. <www.sciencedaily.com/releases/2010/07/100706150626.htm>.
University at Buffalo. (2010, July 6). With magnetic nanoparticles, scientists remotely control neurons and animal behavior. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2010/07/100706150626.htm
University at Buffalo. "With magnetic nanoparticles, scientists remotely control neurons and animal behavior." ScienceDaily. www.sciencedaily.com/releases/2010/07/100706150626.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) — Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) — Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) — A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) — A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins