Featured Research

from universities, journals, and other organizations

Link between brain activity and Parkinson's disease symptoms: New strategy for treating movement disorders identified

Date:
July 7, 2010
Source:
Gladstone Institutes
Summary:
Scientists have shown how key circuits in the brain control movement. The research not only establishes the function of these circuits, but offers promise for treating movement related disorders, such as Parkinson's disease.

Scientists at the Gladstone Institute of Neurological Disease (GIND) and Stanford University have shown how key circuits in the brain control movement. The research, published in the journal Nature, not only establishes the function of these circuits, but offers promise for treating movement related disorders, such as Parkinson's disease.

The research team was led by GIND investigator Anatol Kreitzer, PhD, who collaborated with Stanford's Karl Deisseroth, MD PhD, creator of a light activation technology that enabled scientists to activate specific circuits in the motor regions of brain.

"Scientists had identified and diagrammed these circuits in the late 80s and early 1990s, but there had been no way to test their function in animal models," explained Dr. Kreitzer. "This research used genetic methods to allow mice to produce a light-sensitive protein in very select group of cells in the brain."

For decades, a leading theory predicted that our movements are controlled by "go" and "stop" circuits, or pathways, that exert a sort of push-pull control over motor function. Signals are sent to the motor control center in the brain cortex to say, "Yes, go ahead and do this," or "No, stop. Don't do this." In Parkinson's disease, these pathways were thought to go out of balance, causing "stop" signals to dominate. But the function of these pathways had never been experimentally tested.

The researchers used a molecular "switch" from green algae called channelrhodopsin-2 (ChR2), which is turned on by blue light. Scientists genetically engineered ChR2 specifically into cells of either the stop or go pathways in a mouse.

A fiber optic the width of a human hair was then inserted into the brain. When a laser connected to the fiber optics was illuminated, the light in the brain caused the ChR2 to turn on, and this action stimulated only the stop cells or only the go cells. When the light was off, the cells were quiet. As soon as the light was turned on, they became active. When the light was turned off, the activity stopped.

"The theory about Parkinson's is that the 'stop' pathway becomes more active," Kreitzer said. "We wanted to see if we could mimic a Parkinson-like state simply by activating the stop pathway in a mouse."

Researchers found that the mouse with the fiber optics implanted in the brain moved normally with the laser turned off and froze when the laser was turned on. With the laser off, and the mouse's movement was restored. "It's not something we can do for just a second," Kreitzer said. "We can do this for as long as the laser is on."

The fundamental nature of movement makes diseases of the motor system, such as Parkinson's disease, particularly devastating. After Alzheimer's disease, Parkinson's is the second most common neurodegenerative disease. It is caused by a loss of the brain chemical dopamine, and it affects 1-3% of those over 65, or about one million Americans. Its major symptoms are resting tremor, rigidity (an increase in muscle tone), slowed movements, problems with posture, and difficulty walking.

"We found that by activating the 'stop' pathway we could mimic Parkinson's disease. But what we really wanted was a strategy to treat the disease symptoms." For this, Dr. Kreitzer and colleagues turned to the "go" pathway. "We thought that by activating the 'go' pathway, we could re-balance these brain pathways and directly restore movement, even in the absence of dopamine." The strategy worked even better than expected. "We generated mice that lacked dopamine, and these mice showed many of the same symptoms found in humans with Parkinson's disease. But when we activated the 'go' pathway in these mice, they began to move around normally again. We restored all of their motor deficits with this treatment, even though the mice still lacked dopamine."

He added that selective stimulation of the motor planning circuitry might be important for treating Parkinson's and also other disorders involving these circuits, such as Huntington's disease, Tourette's syndrome, obsessive-compulsive disorder, and addiction. Finally, by using these methods to identify the important circuits, new drugs can be developed to home in on these specific circuits now that their function is known.

Other contributors to this work are Lex Kravitz, Benjamin Freeze, Philip Parker, Kenneth Kay, and Myo Thwin.

The research was funded by the Gladstone Institutes, the W.M. Keck Foundation, the Pew Scholars Program in the Biomedical Sciences, the McKnight Foundation, and the NIH.

Dr. Kreitzer's primary affiliation is with the Gladstone Institute of Neurological Disease where his laboratory is located and his research is conducted. Dr. Kreitzer is also Assistant Professor of Physiology and Neurology at the University of California, San Francisco.


Story Source:

The above story is based on materials provided by Gladstone Institutes. Note: Materials may be edited for content and length.


Cite This Page:

Gladstone Institutes. "Link between brain activity and Parkinson's disease symptoms: New strategy for treating movement disorders identified." ScienceDaily. ScienceDaily, 7 July 2010. <www.sciencedaily.com/releases/2010/07/100707131357.htm>.
Gladstone Institutes. (2010, July 7). Link between brain activity and Parkinson's disease symptoms: New strategy for treating movement disorders identified. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/07/100707131357.htm
Gladstone Institutes. "Link between brain activity and Parkinson's disease symptoms: New strategy for treating movement disorders identified." ScienceDaily. www.sciencedaily.com/releases/2010/07/100707131357.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins