Featured Research

from universities, journals, and other organizations

Sirtuin1 may boost memory and learning ability; Discovery could lead to new drugs to fight Alzheimer's, other neurological diseases

Date:
July 29, 2010
Source:
Massachusetts Institute of Technology
Summary:
The same molecular mechanism that increases life span through calorie restriction may help boost memory and brainpower, researchers report.

The same molecular mechanism that increases life span through calorie restriction may help boost memory and brainpower, researchers at MIT's Picower Institute for Learning and Memory report in the July 11 issue of Nature.

Resveratrol, found in wine, has been touted as a life-span enhancer because it activates a group of enzymes known as sirtuins, which have gained fame in recent years for their ability to slow the aging process. Now MIT researchers report that Sirtuin1 -- a protein that in humans is encoded by the SIRT1 gene -- also promotes memory and brain flexibility.

The work may lead to new drugs for Alzheimer's disease and other debilitating neurological diseases.

"We demonstrated previously that Sirtuin1 promotes neuronal survival in age-dependent neurodegenerative disorders. In our cell and mouse models for Alzheimer's disease, SIRT1 promoted neuronal survival, reduced neurodegeneration and prevented learning impairment," said Li-Huei Tsai, director of the Picower Institute and lead author of the study.

"We have now found that SIRT1 activity also promotes plasticity and memory," said Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. "This result demonstrates a multi-faceted role of SIRT1 in the brain, further highlighting its potential as a target for the treatment of neurodegeneration and conditions with impaired cognition, with implications for a wider range of central nervous system disorders."

In separate work at MIT, researchers discovered that the sir2 (silent information regulator) gene is a key regulator of longevity in both yeast and worms. Ongoing studies are exploring whether this highly conserved gene also governs longevity in mammals.

The mammalian version of the gene, SIRT1, seems to have evolved complex systemic roles in cardiac function, DNA repair and genomic stability. SIRT1 is thought to be a key regulator of an evolutionarily conserved pathway that allows organisms to cope with adversity. These genes and the enzymes they produce are part of a feedback system that enhances cell survival during times of stress, especially a lack of food.

Recent studies linked SIRT1 to normal brain physiology and neurological disorders. However, it was unknown if SIRT1 played a role in higher-order brain functions.

The Picower Institute study shows that SIRT1 enhances synaptic plasticity, the connections among neurons, and memory formation. These findings demonstrate a new role for SIRT1 in cognition and a previously unknown mechanism by which SIRT1 regulates these processes.

MicroRNAs are small RNA molecules encoded in the genomes of plants and animals. These gene regulators are involved in many aspects of normal and abnormal brain function. The Picower study found that SIRT1 aids memory and synaptic plasticity through a previously unknown microRNA-based mechanism: SIRT1 keeps a specific microRNA in check, allowing key plasticity proteins to be expressed.

In addition to helping neurons survive, SIRT1 also has a direct role in regulating normal brain function, demonstrating its value as a potential therapeutic target for the treatment of the central nervous system.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. The original article was written by Deborah Halber, MIT's Picower Institute for Learning and Memory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jun Gao Wen-Yuan Wang, Ying-Wei Mao, Johannes Gräff, Ji-Song Guan, Ling Pan, Gloria Mak, Dohoon Kim, Susan C. Su and Li-Huei Tsai. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature, July 11, 2010

Cite This Page:

Massachusetts Institute of Technology. "Sirtuin1 may boost memory and learning ability; Discovery could lead to new drugs to fight Alzheimer's, other neurological diseases." ScienceDaily. ScienceDaily, 29 July 2010. <www.sciencedaily.com/releases/2010/07/100711155908.htm>.
Massachusetts Institute of Technology. (2010, July 29). Sirtuin1 may boost memory and learning ability; Discovery could lead to new drugs to fight Alzheimer's, other neurological diseases. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2010/07/100711155908.htm
Massachusetts Institute of Technology. "Sirtuin1 may boost memory and learning ability; Discovery could lead to new drugs to fight Alzheimer's, other neurological diseases." ScienceDaily. www.sciencedaily.com/releases/2010/07/100711155908.htm (accessed September 21, 2014).

Share This



More Mind & Brain News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) — The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Food Addiction Might Be Caused By PTSD

Food Addiction Might Be Caused By PTSD

Newsy (Sep. 18, 2014) — New research shows that women who suffer from PTSD are three times more likely to develop a food addiction. Video provided by Newsy
Powered by NewsLook.com
Corporal Punishment on Decline, Debate Renews

Corporal Punishment on Decline, Debate Renews

AP (Sep. 16, 2014) — Corporal punishment in the United States is on the decline, but there is renewed debate over its use after Minnesota Vikings running back Adrian Peterson was charged with child abuse. (Sept. 16) Video provided by AP
Powered by NewsLook.com
FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) — The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins