Featured Research

from universities, journals, and other organizations

Database for personalised cancer treatment: Largest study of genomes and cancer treatments releases first results

Date:
July 15, 2010
Source:
Wellcome Trust Sanger Institute
Summary:
The largest study to correlate genetics with response to cancer drugs releases its first results. The researchers behind the study describe in this initial dataset the responses of 350 cancer samples to 18 anticancer therapeutics. These first results will help cancer researchers around the world to seek better understanding of cancer genetics and could help to improve treatment regimens.

The Genomics of Drug Sensitivity in Cancer project releases its first results. Researchers have released a first dataset from a study that will expose 1,000 cancer cell lines to 400 anticancer treatments.
Credit: Genome Research Limited

The largest study to correlate genetics with response to cancer drugs releases its first results. The researchers behind the study, based at Massachusetts General Hospital Cancer Center and the Wellcome Trust Sanger Institute, describe in this initial dataset the responses of 350 cancer samples to 18 anticancer therapeutics.

These first results, made freely available on the Genomics of Drug Sensitivity website (http://www.sanger.ac.uk/genetics/CGP/translation/), will help cancer researchers around the world to seek better understanding of cancer genetics and could help to improve treatment regimens.

"Today is our first glimpse of this complex interface, where genomes meet cancer medicine," says Dr Andy Futreal, co-leader of the Cancer Genome Project at the Wellcome Trust Sanger Institute. "We will, over the course of this work, add to this picture, identifying genetic changes that can inform clinical decisions, with the hope of improving treatment.

"By producing a carefully curated set of data to serve the cancer research community, we hope to produce a database for improving patient response during cancer treatment."

How a patient responds to anticancer treatment is known to be determined in large part by the combination of mutations in her or his cancer cells. The better this relationship is understood, the better treatment can be targeted to the particular tumour.

The aim of the five-year, international drug-sensitivity study is to find the best combinations of treatments for a wide range of cancer types: roughly 1000 cancer cell lines will be exposed to 400 anticancer treatments, alone or in combination, to determine the most effective drug or combination of drugs in the lab.

The therapies include known anticancer drugs as well as others in pre-clinical development.

To make the study as comprehensive as possible, the researchers have selected 1000 genetically characterised cell lines that include common cancers such as breast, colorectal and lung. Each cell line has been genetically fingerprinted and this data will also be publicly available on the website. Importantly, the researchers will take promising leads from the cancer samples in the lab to be verified in clinical specimens: the findings will be used to design clinical studies in which treatment will be selected based on a patient's cancer mutation spectrum.

The newly released data draw on large-scale analyses of cancer genomes to identify genomic markers of sensitivity to anticancer drugs.

The first data release confirms several genes that predict therapeutic response in different cancer types. These include sensitivity of melanoma, a deadly form of skin cancer, with activating mutations in the gene BRAF to molecular therapeutics targeting this protein, a therapeutic strategy that is currently being exploited in the clinical setting. These first results provide a striking example of the power of this approach to identify genetic factors that determine drug response.

"It is very encouraging that we are able to clearly identify drug-gene interactions that are known to have clinical impact at an early stage in the study," says Dr Ultan McDermott, Faculty Investigator at the Wellcome Trust Sanger Institute. "It suggests that we will discover many novel interactions even before we have the full complement of cancer cell lines and drugs screened.

"We have already studied more gene mutation-drug interactions than any previous work but, more importantly, we are putting in place a mechanism to ensure rapid dissemination of our results to enable worldwide collaborative research. By ensuring that all the drug sensitivity data and correlative analysis is freely available in an easy-to-use website, we hope to enable and support the important work of the wider community of cancer researchers."

Further results from this study should, over its five-year term, identify interactions between mutations and drug sensitivities most likely to translate into benefit for patients: at the moment we do not have sufficient understanding of the complexity of cancer drug response to optimise treatment based on a person's genome.

"We need better information linking tumour genotypes to drug sensitivities across the broad spectrum of cancer heterogeneity, and then we need to be in position to apply that research foundation to improve patient care," says Professor Daniel Haber, Director of the Cancer Centre at Massachusetts General Hospital and Harvard Medical School. "The effectiveness of novel targeted cancer agents could be substantially improved by directing treatment towards those patients that genetic study suggests are most likely to benefit, thus 'personalising' cancer treatment."

The comprehensive results include correlating drug sensitivity with measurements of mutations in key cancer genes, structural changes in the cancer cells (copy number information) and differences in gene activity, making this the largest project of its type and a unique resource for cancer researchers around the world.

"This is one of the Sanger Institute's first large-scale explorations into the therapeutics of human disease," says Professor Mike Stratton, co-leader of the Cancer Genome Project and Director of the Wellcome Trust Sanger Institute. "I am delighted to see the early results from our partnership with the team at Massachusetts General Hospital. Collaboration is essential in cancer research: this important project is part of wider efforts to bring international expertise to bear on cancer."


Story Source:

The above story is based on materials provided by Wellcome Trust Sanger Institute. Note: Materials may be edited for content and length.


Cite This Page:

Wellcome Trust Sanger Institute. "Database for personalised cancer treatment: Largest study of genomes and cancer treatments releases first results." ScienceDaily. ScienceDaily, 15 July 2010. <www.sciencedaily.com/releases/2010/07/100715152901.htm>.
Wellcome Trust Sanger Institute. (2010, July 15). Database for personalised cancer treatment: Largest study of genomes and cancer treatments releases first results. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/07/100715152901.htm
Wellcome Trust Sanger Institute. "Database for personalised cancer treatment: Largest study of genomes and cancer treatments releases first results." ScienceDaily. www.sciencedaily.com/releases/2010/07/100715152901.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins