Featured Research

from universities, journals, and other organizations

Advance made toward communication, computing at 'terahertz' speeds

Date:
July 20, 2010
Source:
Oregon State University
Summary:
Physicists in the United States and Germany have discovered a way to use a gallium arsenide nanodevice as a signal processor at "terahertz" speeds, the first time it's been used for this purpose and an important step forward in the new world of optical communication and computing.

Physicists in the United States and Germany have discovered a way to use a gallium arsenide nanodevice as a signal processor at "terahertz" speeds -- the first time it's been used for this purpose and an important step forward in the new world of optical communication and computing.

Existing communications and computer architecture are increasingly being limited by the pedestrian speed of electrons moving through wires, and the future of high-speed communication and computing is in optics, experts say. The Holy Grail of results would be "wireless interconnecting," which operates at speeds 100 to 1,000 times faster than current technology.

The new discovery, made by researchers at Oregon State University, the University of Iowa and Philipps University in Germany, has identified a way in which nanoscale devices based on gallium arsenide can respond to strong terahertz pulses for an extremely short period, controlling the electrical signal in a semiconductor. The research builds on previous findings for which OSU holds an issued patent.

"Optical communication uses the extraordinary speed of light as the signal, but right now it's still controlled and limited by electrical signaling at the end," said Yun-shik Lee, an associate professor in the OSU Department of Physics. "Electrons and wires are too slow, they're a bottleneck. The future is in optical switching, in which wires are replaced by emitters and detectors that can function at terahertz speeds."

The gallium arsenide devices used in this research can do that, the scientists discovered.

"This could be very important," Lee said. "We were able to manipulate and observe the quantum system, basically create a strong response and the first building block of optical signal processing."

The first applications of this type of technology, Lee said, would probably be in optical communications of almost any type -- video, audio or others. The ultimate application could be quantum computing, in which computers would be orders of magnitude faster than they are now, working with a different physical and logic basis, not even using conventional transistors. Among other uses, their extraordinary speeds would make them extremely valuable for secure codes and communications.

The current use of gallium arsenide was done at the very low temperatures of liquid helium, which would not be practical for broader use. Other materials will need to be identified that can accomplish similar tasks at room temperature, the researchers said.

This research was just published in Solid State Electronics, a professional journal. It was supported by the National Science Foundation and the Oregon Nanoscience and Microtechnologies Institute.


Story Source:

The above story is based on materials provided by Oregon State University. Note: Materials may be edited for content and length.


Journal Reference:

  1. J.L. Tomaino, A.D. Jameson, Yun-Shik Lee, J.P. Prineas, J.T. Steiner, M. Kira, S.W. Koch. Ultrafast nonlinear optical effects in semiconductor quantum wells resonantly driven by strong few-cycle terahertz pulses. Solid-State Electronics, 2010; DOI: 10.1016/j.sse.2010.05.020

Cite This Page:

Oregon State University. "Advance made toward communication, computing at 'terahertz' speeds." ScienceDaily. ScienceDaily, 20 July 2010. <www.sciencedaily.com/releases/2010/07/100719162949.htm>.
Oregon State University. (2010, July 20). Advance made toward communication, computing at 'terahertz' speeds. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2010/07/100719162949.htm
Oregon State University. "Advance made toward communication, computing at 'terahertz' speeds." ScienceDaily. www.sciencedaily.com/releases/2010/07/100719162949.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins