Featured Research

from universities, journals, and other organizations

Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents

Date:
July 26, 2010
Source:
Society for Experimental Biology and Medicine
Summary:
Scientists have incorporated nanotechnology, material science, and the clinical imaging modality MRI, to create a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. Studies in cell and preclinical animal models showed increase uptake of vascular targeted-nanoprobes over non-targeted nanoprobes.

Formation of new blood vessels, also known as angiogenesis, is crucial for sustained tumor growth and cancer metastasis. Recently, clinically available therapies to suppress the growth of these vessels have been available to improve patient survival in some cancer types. Accurate detection and quantification of blood vessel growth using nonsurgical methods would greatly complement current therapies and allow physicians to quickly assess treatment regimens and adjust them as necessary.

Related Articles


In the work published in the August issue of Experimental Biology and Medicine, Kessinger and coworkers have incorporated nanotechnology, material science, and the clinical imaging modality MRI, to create a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. The work was carried out by Chase Kessinger, as part of his PhD thesis in cancer molecular imaging, working together with Jinming Gao and other colleagues, at the University of Texas Southwestern Medical Center at Dallas.

Dr. Gao stated "Imaging tumor angiogenesis is important in early detection, tumor stratification and post-therapy assessment of antiangiogenic drugs. Current clinical modality for angiogenesis imaging utilizes dynamic contrast enhancement MRI by small molecular contrast agents. The method is based on the measurement of permeability of the contrast probes in well-established solid tumors and is not very specific to detect the early on-set of vessel formation. The dual functional nanoprobes aim to image angiogenesis-specific tumor markers that are overly expressed in the tumor vasculature during the early phase of angiogenesis."

Together, the research team relied on nanotechnology and established super paramagnetic micellar nanoprobes (50-70 nm in diameter) with greatly improved MRI sensitivity over conventional small molecular agents. The nanoprobe surface was functionalized with integrins that are a cyclic peptide that can specifically bind to overexpressed on the tumor endothelial cells. The nanoprobes also had a fluorescent moiety used for the validation of targeted delivery to the tumor endothelial cells. Studies in cancer cells validated the increased uptake of nanoprobes compared to non-targeted-nanoparticles. In collaboration with Dr. Masaya Takahashi and coworkers in the Advanced Imaging Research Center at UT Southwestern Medical Center, the research team employed a 3D high resolution acquisition method to visualize the accumulation of the micelle nanoprobes in tumors.

Dr. Gao said "Conventional image analysis of angiogenesis relies on the evaluation of 'hot spot' densities in 2D images. The 3D high resolution method allowed for the connection of the isolated 'hot spots' in 2D slices into 3D network structures, which greatly improves the accuracy of vessel identification and quantification."

In preclinical animal tumor models, MR imaging of the targeted contrast probes yielded vascularized network structures in 3D tumor images. The enhanced visualization allowed for a more accurate quantification of tumor angiogenesis. The results showed significant increase of contrast specificity of angiogenic vessels by the targeted nanoprobes over non-targeted micelles. These targeted nanoprobes may provide a useful contrast probe design for the clinical diagnosis of tumor angiogenesis.

Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "Kessinger et al working at the interface of nanotechnology, material science, and the clinical imaging modality MRI have created a nanosized probe capable of noninvasively visualizing and quantifying the blood vessel growth in tumors in a preclinical model. This should be an important tool for clinical observation of tumor angiogenesis."


Story Source:

The above story is based on materials provided by Society for Experimental Biology and Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Chase W Kessinger, Chalermchai Khemtong, Osamu Togao, Masaya Takahashi, Baran D Sumer, and Jinming Gao. In vivo angiogenesis imaging of solid tumors by {alpha}vβ3-targeted, dual-modality micellar nanoprobes. Exp. Biol. Med., 235(8): 957%u2014965 DOI: 10.1258/ebm.2010.010096

Cite This Page:

Society for Experimental Biology and Medicine. "Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents." ScienceDaily. ScienceDaily, 26 July 2010. <www.sciencedaily.com/releases/2010/07/100723123938.htm>.
Society for Experimental Biology and Medicine. (2010, July 26). Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2010/07/100723123938.htm
Society for Experimental Biology and Medicine. "Noninvasive MR imaging of blood vessel growth in tumors using nanosized contrast agents." ScienceDaily. www.sciencedaily.com/releases/2010/07/100723123938.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Christmas Kissing Good for Health

Christmas Kissing Good for Health

Reuters - Innovations Video Online (Dec. 22, 2014) Scientists in Amsterdam say couples transfer tens of millions of microbes when they kiss, encouraging healthy exposure to bacteria. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Brain-Dwelling Tapeworm Reveals Genetic Secrets

Brain-Dwelling Tapeworm Reveals Genetic Secrets

Reuters - Innovations Video Online (Dec. 22, 2014) Cambridge scientists have unravelled the genetic code of a rare tapeworm that lived inside a patient's brain for at least four year. Researchers hope it will present new opportunities to diagnose and treat this invasive parasite. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins