Featured Research

from universities, journals, and other organizations

Biological rationale for why intensive lupus treatment works

Date:
July 27, 2010
Source:
UT Southwestern Medical Center
Summary:
Researchers have uncovered the biological rationale for why large doses of corticosteroids given repeatedly over several weeks may help individuals with lupus, a chronic inflammatory disease that affects more than one million people in the US.

Researchers at UT Southwestern Medical Center have uncovered the biological rationale for why large doses of corticosteroids given repeatedly over several weeks may help individuals with lupus, a chronic inflammatory disease that affects more than 1 million people in the U.S.

Unlike the anabolic steroids athletes sometimes use illegally to bulk up muscle, corticosteroids are routinely used to treat inflammation in lupus patients. The drugs, however, can cause undesirable side effects including weight gain and acne when taken over long periods of time.

In a study published in a recent issue of Nature, researchers at UT Southwestern and other institutions show in blood cells that giving very high doses of intravenous corticosteroids early and frequently in the course of the disease is more effective at killing the cells that drive lupus than giving the standard limited intravenous steroids followed by high doses of oral corticosteroids over a period of months. The cells used came from lupus patients as well as from animal models of lupus.

"By giving the very high dose early and frequently in the course of the disease, we could actually end up using much less steroids in the long run," said Dr. Marilynn Punaro, professor of pediatrics at UT Southwestern and co-author of the study. "This finding suggests that by doing so, we might be able to get the disease under control more quickly and patients might experience fewer long-term side effects."

Dr. Punaro, who treats patients at Children's Medical Center Dallas and Texas Scottish Rite Hospital for Children, said her team often uses this treatment plan -- referred to as pulse steroids -- with lupus patients because they've found it can be more effective than standard treatment at maintaining control of the disease.

The standard treatment involves giving very high doses of steroids intravenously for only a few days. Most physicians then transition to a high oral dose and gradually reduce the amount of steroids to the lowest level at which the drugs are still effective.

Lupus is a debilitating autoimmune disease in which the immune system attacks the body's own tissue and organs, including the joints, kidneys, heart, lungs, brain, blood and skin. The Lupus Foundation of America estimates that 1.5 million Americans have the disease, which affects all age groups. It is 10 to 15 times more likely in adult women than adult men.

The immune system of lupus patients is dysfunctional, causing inflammation throughout the body. In this study, researchers used the blood cells to investigate why the standard treatment might be less effective in halting the inflammation.

They found that pulse doses of intravenous steroids kill off the cells -- called plasmacytoid dendritic cells -- producing interferon alpha, a protein that promotes this inflammation. Oral corticosteroids given at much lower doses did not have this effect.

"Now we have the biological rationale for why pulsing is often more effective than standard therapy," said Dr. Tracey Wright, assistant professor of pediatrics at UT Southwestern and another study co-author.

Dr. Punaro, director of the pediatric rheumatology division at UT Southwestern, said the team hopes that this study will lead to recommendations on ways to treat lupus patients more effectively.

"If the patient receives very high doses of pulse steroids during the induction period, when steroid-sparing long-term drugs -- which take a while to work -- are being ramped up to an effective level, then our experience has been that we end up using fewer steroids overall," Dr. Punaro said. "Steroids are probably always going to be a short-term fix because they work quickly and powerfully, but we hope that this information will enable physicians to be smarter about how they use steroids."

The next step, she said, is to use the paper's scientific rationale as the basis for a clinical trial comparing patients who receive the more intensive therapy with those getting standard therapy.

Dr. Virginia Pascual, former director of the pediatric rheumatology division at UT Southwestern, contributed to the study. Researchers from Dynavax Technologies Corp. were lead and senior authors of the paper; researchers at Baylor Institute for Immunology Research, the National Institutes of Health and Institut Curie in Paris also contributed to the investigation.

The study was supported by the National Institutes of Health, the Alliance for Lupus Research and the Mary Kirkland Center for Lupus Research.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Biological rationale for why intensive lupus treatment works." ScienceDaily. ScienceDaily, 27 July 2010. <www.sciencedaily.com/releases/2010/07/100726151605.htm>.
UT Southwestern Medical Center. (2010, July 27). Biological rationale for why intensive lupus treatment works. ScienceDaily. Retrieved August 22, 2014 from www.sciencedaily.com/releases/2010/07/100726151605.htm
UT Southwestern Medical Center. "Biological rationale for why intensive lupus treatment works." ScienceDaily. www.sciencedaily.com/releases/2010/07/100726151605.htm (accessed August 22, 2014).

Share This




More Health & Medicine News

Friday, August 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com
Lost Brain Cells To Blame For Sleep Problems Among Seniors

Lost Brain Cells To Blame For Sleep Problems Among Seniors

Newsy (Aug. 21, 2014) According to a new study, elderly people might have trouble sleeping because of the loss of a certain group of neurons in the brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins