Featured Research

from universities, journals, and other organizations

Inherited brain activity predicts childhood risk for anxiety, research finds

Date:
August 12, 2010
Source:
University of Wisconsin-Madison
Summary:
A new study focused on anxiety and brain activity pinpoints the brain regions that are relevant to developing childhood anxiety. The findings may lead to new strategies for early detection and treatment of at-risk children.

A new study focused on anxiety and brain activity pinpoints the brain regions that are relevant to developing childhood anxiety. The findings, published in the Aug. 12 edition of the journal Nature, may lead to new strategies for early detection and treatment of at-risk children.

"Children with anxious temperaments suffer from extreme shyness, persistent worry and increased bodily responses to stress," says Ned H. Kalin, chair of psychiatry at the University of Wisconsin-Madison School of Medicine and Public Health, who led the research. "It has long been known that these children are at increased risk of developing anxiety, depression, and associated substance abuse disorders."

The new study by Kalin and colleagues demonstrated that increased brain activity in the amygdala and anterior hippocampus could predict anxious temperament in young primates.

"We believe that young children who have higher activity in these brain regions are more likely to develop anxiety and depression as adolescents and adults and are also more likely to develop drug and alcohol problems in an attempt to treat their distress," says Kalin.

Previous research led by Kalin established that anxious young monkeys are similar to children who are temperamentally anxious. In the current study, researchers examined the extent to which genetic and environmental factors influence activity in the anxiety-related brain regions that may make children vulnerable.

In the largest imaging study of nonhuman primates, the researchers at UW-Madison scanned the brains of 238 young rhesus monkeys, all of which belong to the same extended family. The monkeys underwent a positron emission tomography (PET) scan, which in humans is used to understand regional brain function by measuring the brain's use of glucose.

Key findings of the study include:

  • Young rhesus monkeys from a large related family showed a clear pattern of inherited anxious temperament.
  • Monkeys with anxious temperaments had higher activity in the central nucleus of the amygdala and the anterior hippocampus. In addition, researchers could predict an individual's degree of anxious temperament by its brain activity.
  • Genes and environmental factors affected activity in the amygdala and hippocampus in different ways, providing a brain-based understanding of how nature and nurture might interact to determine an individual's vulnerability to developing common psychiatric disorders.

First author Jonathan Oler, associate scientist at the UW-Madison Department of Psychiatry, says the findings were a surprise.

"We expected that all of the brain regions involved in anxious temperament would be similarly affected by genes and environment, but found that activity in the anterior hippocampus was more heritable than in the amygdala," says Oler.

The new discovery may ultimately lead to new ways to detect anxiety in children, says Drew Fox, a graduate student working with Kalin and a co-author on the study.

"Markers of familial risk for anxiety could be identified by understanding alterations in specific genes that influence hippocampal function," says Fox.

The study suggests that there is a tremendous opportunity to modify the environment to prevent children from developing full-blown anxiety.

"My feeling is that the earlier we intervene with children, the more likely they will be to lead a happy life in which they aren't as controlled by anxiety and depression," says Kalin, who is also director of the UW-Madison HealthEmotions Research Institute. "We think we can train vulnerable kids to settle their brains down."

Under Kalin's leadership, researchers at the HealthEmotions Research Institute are translating these findings to humans by measuring amygdala and hippocampal function in young children who have early signs of anxiety and depression.

Kalin emphasizes that the research could not have been accomplished without the important contributions of collaborators including Steve Shelton, Richie Davidson and Terry Oakes of UW-Madison; Tom Dyer, Wendy Shelledy and John Blangero of the Southwest Foundation; and Jeff Rogers of Baylor University.


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan A. Oler, Andrew S. Fox, Steven E. Shelton, Jeffrey Rogers, Thomas D. Dyer, Richard J. Davidson, Wendy Shelledy, Terrence R. Oakes, John Blangero & Ned H. Kalin. Amygdalar and hippocampal substrates of anxious temperament differ in their heritability. Nature, 2010; 466 (7308): 864 DOI: 10.1038/nature09282

Cite This Page:

University of Wisconsin-Madison. "Inherited brain activity predicts childhood risk for anxiety, research finds." ScienceDaily. ScienceDaily, 12 August 2010. <www.sciencedaily.com/releases/2010/08/100811135037.htm>.
University of Wisconsin-Madison. (2010, August 12). Inherited brain activity predicts childhood risk for anxiety, research finds. ScienceDaily. Retrieved August 28, 2014 from www.sciencedaily.com/releases/2010/08/100811135037.htm
University of Wisconsin-Madison. "Inherited brain activity predicts childhood risk for anxiety, research finds." ScienceDaily. www.sciencedaily.com/releases/2010/08/100811135037.htm (accessed August 28, 2014).

Share This




More Mind & Brain News

Thursday, August 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com
Brain Surgery in 3-D

Brain Surgery in 3-D

Ivanhoe (Aug. 27, 2014) Neurosurgeons now have a new approach to brain surgery using the same 3D glasses you’d put on at an IMAX movie theater. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins