Featured Research

from universities, journals, and other organizations

Glasperlenspiel: Scientists propose new test for gravity

Date:
September 13, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
A new experiment proposed by physicists may allow researchers to test the effects of gravity with unprecedented precision at very short distances -- a scale at which exotic new details of gravity's behavior may be detectable.

A beam of laser light (red) should be able to cause a glass bead of approximately 300 nanometers in diameter to levitate, and the floating bead would be exquisitely sensitive to the effects of gravity. Moving a large heavy object (gold) to within a few nanometers of the bead could allow the team to test the effects of gravity at very short distances.
Credit: K. Talbott/NIST

A new experiment proposed by physicists at the National Institute of Standards and Technology (NIST) may allow researchers to test the effects of gravity with unprecedented precision at very short distances -- a scale at which exotic new details of gravity's behavior may be detectable.

Of the four fundamental forces that govern interactions in the universe, gravity may be the most familiar, but ironically it is the least understood by physicists. While gravity's influence is well-documented on bodies separated by astronomical or human-scale distances, it has been largely untested at very close scales -- on the order of a few millionths of a meter -- where electromagnetic forces often dominate. This lack of data has sparked years of scientific debate.

"There are lots of competing theories about whether gravity behaves differently at such close range," says NIST physicist Andrew Geraci, "But it's quite difficult to bring two objects that close together and still measure their motion relative to each other very precisely."

In an attempt to sidestep the problem, Geraci and his co-authors have envisioned an experiment that would suspend a small glass bead in a laser beam "bottle," allowing it to move back and forth within the bottle. Because there would be very little friction, the motion of the bead would be exquisitely sensitive to the forces around it, including the gravity of a heavy object placed nearby.

According to the research team, the proposed experiment would permit the testing of gravity's effects on particles separated by 1/1,000 the diameter of a human hair, which could ultimately allow Newton's law to be tested with a sensitivity 100,000 times better than existing experiments.

Actually realizing the scheme -- detailed in a new paper in Physical Review Letters -- could take a few years, co-author Scott Papp says, in part because of trouble with friction, the old nemesis of short-distance gravity research. Previous experiments have placed a small object (like this experiment's glass bead) onto a spring or short stick, which have created much more friction than laser suspension would introduce, but the NIST team's idea comes with its own issues.

"Everything creates some sort of friction," Geraci says. "We have to make the laser beams really quiet, for one thing, and then also eliminate all the background gas in the chamber. And there will undoubtedly be other sources of friction we have not yet considered."

For now, Geraci says, the important thing is to get the idea in front of the scientific community.

"Progress in the scientific community comes not just from individual experiments, but from new ideas," he says. "The recognition that this system can lead to very precise force measurements could lead to other useful experiments and instruments."


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Andrew Geraci, Scott Papp, John Kitching. Short-Range Force Detection Using Optically Cooled Levitated Microspheres. Physical Review Letters, 2010; 105 (10): 101101 DOI: 10.1103/PhysRevLett.105.101101

Cite This Page:

National Institute of Standards and Technology (NIST). "Glasperlenspiel: Scientists propose new test for gravity." ScienceDaily. ScienceDaily, 13 September 2010. <www.sciencedaily.com/releases/2010/09/100901111640.htm>.
National Institute of Standards and Technology (NIST). (2010, September 13). Glasperlenspiel: Scientists propose new test for gravity. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2010/09/100901111640.htm
National Institute of Standards and Technology (NIST). "Glasperlenspiel: Scientists propose new test for gravity." ScienceDaily. www.sciencedaily.com/releases/2010/09/100901111640.htm (accessed September 30, 2014).

Share This



More Matter & Energy News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Argentina's Tax Evaders Detected, Hunted Down by Drones

Argentina's Tax Evaders Detected, Hunted Down by Drones

AFP (Sep. 30, 2014) — Argentina doesn't only have Lionel Messi the footballer, it has now also acquired "Mesi" the drone system which monitors undeclared mansions, swimming pools and soy fields to curb tax evasion in the country. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
Do Video Games Trump Brain Training For Cognitive Boosts?

Do Video Games Trump Brain Training For Cognitive Boosts?

Newsy (Sep. 29, 2014) — More and more studies are showing positive benefits to playing video games, but the jury is still out on brain training programs. Video provided by Newsy
Powered by NewsLook.com
CERN Celebrates 60 Years of Science

CERN Celebrates 60 Years of Science

Reuters - Business Video Online (Sep. 29, 2014) — CERN, the European Organisation for Nuclear Research, celebrates 60 years of bringing nations together through science. As Joanna Partridge reports from inside the famous science centre it's also planning to turn the Large Hadron Collider particle accelerator back on after an upgrade. Video provided by Reuters
Powered by NewsLook.com
This 'Invisibility Cloak' Is Simpler Than Most

This 'Invisibility Cloak' Is Simpler Than Most

Newsy (Sep. 28, 2014) — Researchers from the University of Rochester have created a type of invisibility cloak with simple focal lenses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins