Featured Research

from universities, journals, and other organizations

First detailed image of disc around young star

Date:
September 10, 2010
Source:
European Southern Observatory
Summary:
New research carried out using ESO telescopes has, for the first time, allowed astronomers to reconstruct a detailed picture of the inner disc of matter around a young star -- HD 163296. Young stars are surrounded by discs of dust and gas and scientists believe that it is in these discs that planets are born. Dusty grains in the disc stick to each other to make larger lumps that in turn also aggregate together. This growth is expected to continue until rocky bodies about the size of the Earth are formed.

New research carried out using ESO telescopes has, for the first time, allowed astronomers to reconstruct a detailed picture of the disc of matter around a young star. Stéphanie Renard of the Laboratoire d’Astrophysique de Grenoble and colleagues used the ESO VLT Interferometer to probe the secrets of the inner part of the disc around the star HD 163296. This image shows the reconstruction of images in two parts of the near-infrared spectrum (H and K). The green ellipse traces the location of the newly discovered ring inside which the dust was found. The white ellipse represents the orbit of the Earth around the Sun placed in this system in order to show the scale of the picture and the extraordinarily fine details that are revealed in this image.
Credit: ESO/S. Renard

New research carried out using ESO telescopes has, for the first time, allowed astronomers to reconstruct a detailed picture of the inner disc of matter around a young star. Stéphanie Renard of the Laboratoire d'Astrophysique de Grenoble and colleagues used the ESO VLT Interferometer to probe the secrets of the star HD 163296.

Related Articles


Young stars are surrounded by discs of dust and gas and scientists believe that it is in these discs that planets are born. Dusty grains in the disc stick to each other to make larger lumps that in turn also aggregate together. This growth is expected to continue until rocky bodies about the size of the Earth are formed.

"The power of the VLT Interferometer to probe very fine details now allows us to see the inner region very close to the star where there is not expected to be any dust. The new images reveal the ring-shaped structure of this very elusive region," said Renard.

No single telescope currently in operation has vision acute enough to study such tiny and distant objects. The size of the region of the disc observed corresponds to 150 million kilometres -- about the distance between the Earth and the Sun, but located at 360 light-years from Earth.

These very tiny details have an angular size of around 10 milliarcseconds -- equivalent to trying to pick out small features on a road map held up 40 kilometres away. These minute angles are far smaller than any single telescope now operating can resolve.

To be able to image the inner part of the disc of matter close to the star, the team used a technique known as interferometry, in which sophisticated instrumentation combines the light from several telescopes into one observation. This increases the level of detail in the resulting pictures dramatically, although it does have some drawbacks: the results have to be reconstructed using complex mathematical algorithms because interferometry does not produce unambiguous images. But this difficult work is worthwhile as the resulting pictures tease out details far beyond the capabilities of the individual telescopes.

The team used data from the Very Large Telescope Interferometer, located at ESO's Paranal Observatory, for the bulk of their work on this star. The facility includes four 8.2-metre Unit Telescopes and four 1.8-metre Auxiliary Telescopes, which can be used in several different combinations to produce interferometric observations. The data was thoroughly analysed earlier this year but, now, for the first time, the astronomers have been able to reconstruct an image of such a young object, with minimal assumptions, thanks to a powerful mathematical algorithm developed by team member Eric Thiébaut. The resulting image has the detail you would normally expect from a telescope with a mirror over 130 metres across, far bigger than any currently in existence. To gain further precision, the team combined the VLT Interferometer observations with data from CHARA, Keck and IOTA interferometers.

"This is the first time that an image with such a level of detail has been achieved of a young star surrounded by a disc -- a system that could represent how the Solar System formed 4.5 billion years ago," said co-author Fabien Malbet. "We are eager to improve these images to understand the fundamental mechanisms that drive planetary formation better."

"Creating an image of this star has really pushed back the boundaries of what is possible with current technology. It's a showcase for what can be achieved when you combine the power of some of the most advanced observatories in the world," concludes co-author Myriam Benisty. "Interferometry has definitely entered the world of images and the Very Large Telescope Interferometer is a crucial part of it."


Story Source:

The above story is based on materials provided by European Southern Observatory. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. Benisty, A. Natta, A. Isella, J-P. Berger, F. Massi, J-B. Le Bouquin, A. Mérand, G. Duvert, S. Kraus, F. Malbet, J. Olofsson, S. Robbe-Dubois, L. Testi, M. Vannier, G. Weigelt. Strong near-infrared emission in the sub-AU disk of the Herbig Ae star HD 163296: evidence of refractory dust? Astronomy and Astrophysics, 2010; 511: A74 DOI: 10.1051/0004-6361/200912898

Cite This Page:

European Southern Observatory. "First detailed image of disc around young star." ScienceDaily. ScienceDaily, 10 September 2010. <www.sciencedaily.com/releases/2010/09/100910085010.htm>.
European Southern Observatory. (2010, September 10). First detailed image of disc around young star. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/09/100910085010.htm
European Southern Observatory. "First detailed image of disc around young star." ScienceDaily. www.sciencedaily.com/releases/2010/09/100910085010.htm (accessed October 24, 2014).

Share This



More Space & Time News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) — China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) — The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) — Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) — A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins