Featured Research

from universities, journals, and other organizations

Molecular 'playbook' for halting heart failure risk factor uncovered

Date:
September 24, 2010
Source:
University of Rochester Medical Center
Summary:
Scientists discovered a potential molecular playbook for blocking cardiac hypertrophy, the unwanted enlargement of the heart and a well-known precursor of heart failure. Researchers uncovered a specific molecular chain of events that leads to the inhibition of this widespread risk factor.

Like a well-crafted football play designed to block the opposing team's offensive drive to the end zone, the body constantly executes complex 'plays' or sequences of events to initiate, or block, different actions or functions.

Scientists at the University of Rochester Medical Center recently discovered a potential molecular playbook for blocking cardiac hypertrophy, the unwanted enlargement of the heart and a well-known precursor of heart failure. Researchers uncovered a specific molecular chain of events that leads to the inhibition of this widespread risk factor.

The new research, published in Proceedings of the National Academy of Sciences, is a concept study in the very early stages of investigation and has yet to be examined in animal models. Nonetheless, it represents a new avenue of exploration for scientists working to find ways to prevent and treat cardiac hypertrophy and heart failure.

"While our findings are still in the beginning phases, they are important because heart failure is a major cause of human disease and death, and it remains very hard to treat," said Zheng-Gen Jin, Ph.D., associate professor within the Aab Cardiovascular Research Institute at the Medical Center and lead author of the study. "One of the main treatments for heart failure, beta blockers, has huge side effects, such as increased fatigue and depression, so scientists need to continue to look for new ways to care for patients with the disease."

The playbook begins with a key protein, histone deacetylase 5, or HDAC5, one of several proteins that influences gene expression -- the process by which genes are turned on and converted into proteins that carry out the body's functions. The location of HDAC5, in conjunction with other factors, helps determine whether or not gene expression takes place: If HDAC5 is pushed outside the nucleus, genes are turned on and proteins are made, but if it remains inside the nucleus genes are suppressed.

The major finding and linchpin in the playbook is the action of PKA, an enzyme that researchers found changes the composition of HDAC5, keeping it inside the nucleus of heart muscle cells and stopping the expression of cardiac fetal or cardiac growth genes -- genes that spur the growth of a newly developing heart in a fetus, but also cause the growth of unwanted heart muscle cells in adults, making the organ bigger and thicker than it should be.

Researchers also believe PKA helps counteract stress signals, such as from high blood pressure, which interact with and typically boot HDAC5 out of the nucleus, clearing the way for the expression of cardiac growth genes and the subsequent development of heart muscle cells that lead to the enlargement of the heart.

Cardiac hypertrophy usually occurs when there is added stress on the heart. The most common cause of hypertrophy is hypertension, or high blood pressure, which forces the heart to work harder to pump blood throughout the body, causing the muscle to thicken over time. When the heart is enlarged, it does not work as efficiently as it should and can lead to heart failure.

According to Jin, next steps include animal studies to determine if keeping HDAC5 in the nucleus through PKA signaling stops cardiac hypertrophy in mice. Findings may reveal the HDAC5/PKA interaction as a viable target for drug therapy to treat cardiac hypertrophy and heart failure. Researchers have filed a patent application for the concept that is currently pending.

"Jin and his team have defined a new, potentially drugable target for treating cardiac hypertrophy, yet much more research is needed to determine if the findings hold beyond the current study," said Joseph Miano, Ph.D., associate director of the Aab Cardiovascular Research Institute.

The study was funded by the National Institutes of Health. In addition to Jin, Chang Hoon Ha, Ph.D., Ji Young Kim, Ph.D., Jinjing Zhao, M.D., Ph.D., Weiye Wang, M.S., Bong Sook Jhun, Ph.D., and Chelsea Wong from the University of Rochester Medical Center contributed to the research.


Story Source:

The above story is based on materials provided by University of Rochester Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Rochester Medical Center. "Molecular 'playbook' for halting heart failure risk factor uncovered." ScienceDaily. ScienceDaily, 24 September 2010. <www.sciencedaily.com/releases/2010/09/100923142446.htm>.
University of Rochester Medical Center. (2010, September 24). Molecular 'playbook' for halting heart failure risk factor uncovered. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2010/09/100923142446.htm
University of Rochester Medical Center. "Molecular 'playbook' for halting heart failure risk factor uncovered." ScienceDaily. www.sciencedaily.com/releases/2010/09/100923142446.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins