Featured Research

from universities, journals, and other organizations

Interaction with neighbors: Neuronal field simulates brain activity

Date:
September 27, 2010
Source:
Ruhr-Universitaet-Bochum
Summary:
The appearance of a spot of light on the retina causes sudden activation of millions of neurons in the brain within tenths of milliseconds. At the first cortical processing stage, the primary visual cortex, each neuron thereby receives thousands of inputs from both close neighbors and further distant neurons, and also sends out an equal amount of output to others. In recent decades, individual characteristics of these widespread network connections and the specific transfer characteristics of single neurons have been widely derived. However, a coherent population model approach that provides an overall picture of the functional dynamics, subsuming interactions across all these individual channels, is still lacking. Now scientists in Germany have developed a computational model which allows a mathematical description of far reaching interactions between cortical neurons.

Voltage-sensitive dye imaging across the surface of visual cortex revealed propagating activity waves which may be conveyed by long horizontal neuronal connections.
Credit: Image courtesy of Ruhr-Universitaet-Bochum

The appearance of a spot of light on the retina causes sudden activation of millions of neurons in the brain within tenths of milliseconds. At the first cortical processing stage, the primary visual cortex, each neuron thereby receives thousands of inputs from both close neighbors and further distant neurons, and also sends out an equal amount of output to others. In recent decades, individual characteristics of these widespread network connections and the specific transfer characteristics of single neurons have been widely derived. However, a coherent population model approach that provides an overall picture of the functional dynamics, subsuming interactions across all these individual channels, is still lacking.

RUB Scientists of the Bernstein Group for Computational Neuroscience developed a computational model which allows a mathematical description of far reaching interactions between cortical neurons. The results are published in the open-access journal PLoS Computational Biology.

Cortical activity waves and their possible consequences for visual perception

By means of fluorescent dye that reports voltage changes across neuronal membranes it has been shown how a small spot of light, presented in the visual field, leads to initially local brain activation followed by far distant traveling waves of activity. At first, these waves remain sub-threshold and hence, cannot be perceived consciously. However, a briefly following elongated bar stimulus leads to facilitation of the initiated activity wave. Instead perceiving the bar at once in its full length, it appears to be drawn-out from the location of the previously flashed spot. In psychology this phenomenon has been named 'line-motion illusion' since motion is perceived even though both stimuli are displayed stationary. Thus, brain processes that initiate widespread activity propagation may be partly responsible for this motion illusion.

Neural Fields

RUB Scientists around Dr. Dirk Jancke, Institut für Neuroinformatik, have now successfully implemented these complex interaction dynamics within a computational model. A so-called neural field was used in which the impact of each model neuron is defined by its distant-dependent interaction radius: close neighbors are strongly coupled and further distant neurons are gradually less interacting. Two layers one excitatory, one inhibitory, are recurrently connected such that a local input leads to transient activity that emerges focally followed by propagating activity. Therefore, the entire field dynamics are no longer determined by the sensory input alone but governed to a wide extent by the interaction profile across the neural field. Consequently, within such a model, the overall activity pattern is characterized by interactions that facilitate distant pre-activation far away from any local input.

Such pre-activation may play an important role during processing of moving objects. Given that processing takes time starting from the retina, the brain receives information about the external world with a permanent delay. In order to counterbalance such delays, pre-activation may serve a "forewarning" of neurons that represent locations ahead of an object trajectory and thus, may enable a more rapid crossing of firing thresholds to save important processing times.

What can we generally learn from such a field model regarding brain function? Neural fields allow for a mathematical framework of how the brain operates beyond a simple passive mapping of external events but conducts inter-"active" information processing leading, in limit cases, to what we call illusions. The future challenge will be to implement neural fields for more complex visual stimulus scenarios. Here, it may be an important advantage that this model class allows abstraction from single neuron activity and provides a mathematically handy description in terms of interactive cortical network functioning.


Story Source:

The above story is based on materials provided by Ruhr-Universitaet-Bochum. Note: Materials may be edited for content and length.


Journal Reference:

  1. Olaf Sporns, Valentin Markounikau, Christian Igel, Amiram Grinvald, Dirk Jancke. A Dynamic Neural Field Model of Mesoscopic Cortical Activity Captured with Voltage-Sensitive Dye Imaging. PLoS Computational Biology, 2010; 6 (9): e1000919 DOI: 10.1371/journal.pcbi.1000919

Cite This Page:

Ruhr-Universitaet-Bochum. "Interaction with neighbors: Neuronal field simulates brain activity." ScienceDaily. ScienceDaily, 27 September 2010. <www.sciencedaily.com/releases/2010/09/100927083911.htm>.
Ruhr-Universitaet-Bochum. (2010, September 27). Interaction with neighbors: Neuronal field simulates brain activity. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2010/09/100927083911.htm
Ruhr-Universitaet-Bochum. "Interaction with neighbors: Neuronal field simulates brain activity." ScienceDaily. www.sciencedaily.com/releases/2010/09/100927083911.htm (accessed April 24, 2014).

Share This



More Computers & Math News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Monkeys Are Better At Math Than We Thought, Study Shows

Monkeys Are Better At Math Than We Thought, Study Shows

Newsy (Apr. 23, 2014) — A Harvard University study suggests monkeys can use symbols to perform basic math calculations. Video provided by Newsy
Powered by NewsLook.com
High Court to Hear Dispute of TV Over Internet

High Court to Hear Dispute of TV Over Internet

AP (Apr. 22, 2014) — The future of Aereo, an online service that provides over-the-air TV channels, hinges on a battle with broadcasters that goes before the U.S. Supreme Court on Tuesday. (April 22) Video provided by AP
Powered by NewsLook.com
Aereo Takes on Broadcast TV Titans in Supreme Court Today

Aereo Takes on Broadcast TV Titans in Supreme Court Today

TheStreet (Apr. 22, 2014) — Aereo heads to the Supreme Court today to fight for its right to stream broadcast TV over the Internet -- against broadcasters who say the start-up infringes upon copyright law. TheStreet Deputy Managing Editor Leon Lazaroff explains the importance of the case in the TV industry and details what the outcome of it could mean for broadcasters and for cloud storage services -- as Aereo allows its subscribers to not just watch live TV shows but also store content to a DVR in the cloud. Video provided by TheStreet
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) — The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins