Featured Research

from universities, journals, and other organizations

Research lays foundation for building on the Moon -- or anywhere else

Date:
September 30, 2010
Source:
North Carolina State University
Summary:
The key to the stability of any building is its foundation, but it is difficult to test some building sites in advance -- such as those on the moon. New research is helping resolve the problem by using computer models that can utilize a small sample of soil to answer fundamental questions about how soil at a building site will interact with foundations.

The key to the stability of any building is its foundation, but it is difficult to test some building sites in advance -- such as those on the moon. New research from North Carolina State University is helping resolve the problem by using computer models that can utilize a small sample of soil to answer fundamental questions about how soil at a building site will interact with foundations.

Related Articles


"If you are going to build a large structure, you have to run a lot of tests on the building site to learn how the soil will behave in relation to the building's foundation," says Dr. Matt Evans, assistant professor of civil, construction and environmental engineering at NC State and co-author of a paper describing the research. "How stable is it? How much might the foundation settle over time? Traditionally, that testing process involves a great deal of equipment, time and money."

But in some situations, that equipment, time and money is not available. For example, it would be tough to transport the relevant equipment to the surface of the moon.

"We initiated this project, with funding from the North Carolina Space Grant, to answer questions that are essential to the construction of buildings on the moon," Evans says. "It's cost-prohibitive to do traditional testing on lunar sites, so we developed a technique for applying computer models that can use a tiny sample to tell us about the potential interface between moon soil and anything we might build."

And the model may also have applications closer to home. The model could potentially be used to assess soil conditions for remote building sites where traditional testing is impractical or unduly expensive. For example, it could be useful for military applications or for siting remote research facilities.

The paper, "Analysis of Pile Behavior in Granular Soils Using DEM," focuses on how the model can be used when incorporating Earth-specific variables -- such as gravity. However, those variables can be modified to account for conditions on the moon, or even on Mars.

The lead author on the paper is NC State graduate student Jeremy Kress. The paper will be presented Oct. 13 at the 35th Annual Conference on Deep Foundations in Hollywood, Calif.

NC State's Department of Civil, Construction and Environmental Engineering is part of the university's College of Engineering.


Story Source:

The above story is based on materials provided by North Carolina State University. Note: Materials may be edited for content and length.


Cite This Page:

North Carolina State University. "Research lays foundation for building on the Moon -- or anywhere else." ScienceDaily. ScienceDaily, 30 September 2010. <www.sciencedaily.com/releases/2010/09/100929095340.htm>.
North Carolina State University. (2010, September 30). Research lays foundation for building on the Moon -- or anywhere else. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2010/09/100929095340.htm
North Carolina State University. "Research lays foundation for building on the Moon -- or anywhere else." ScienceDaily. www.sciencedaily.com/releases/2010/09/100929095340.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Space & Time News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Universe Could Be Full Of Tatooine Sunsets

The Universe Could Be Full Of Tatooine Sunsets

Newsy (Mar. 30, 2015) — University of Utah researchers say mathematical simulations show small, rocky planets, like Tatooine from "Star Wars," can form in dual-star systems. Video provided by Newsy
Powered by NewsLook.com
What NASA Wants To Learn From Its 'Year In Space' Tests

What NASA Wants To Learn From Its 'Year In Space' Tests

Newsy (Mar. 28, 2015) — Astronaut Scott Kelly and cosmonaut Mikhail Kornienko will spend a year in space running tests on human physiology and psychology. Video provided by Newsy
Powered by NewsLook.com
Raw: Astronauts Arrive at ISS for 1-Year Mission

Raw: Astronauts Arrive at ISS for 1-Year Mission

AP (Mar. 28, 2015) — The capsule carrying a Russian and an American who are to spend a year away from Earth docked Saturday with the International Space Station. (March 28) Video provided by AP
Powered by NewsLook.com
Crew Starts One-Year Space Mission

Crew Starts One-Year Space Mission

Reuters - News Video Online (Mar. 28, 2015) — Russian-U.S. crew arrives safely at the International Space Station for the start of a ground-breaking year-long stay. Paul Chapman reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins