Featured Research

from universities, journals, and other organizations

Mini-sensor traces faint magnetic signature of human heartbeat

Date:
October 17, 2010
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have used a miniature atom-based magnetic sensor to successfully track a human heartbeat, confirming the device's potential for biomedical applications.

NIST's miniature magnetic sensor is about the size of a sugar cube. The lid has been removed to show the inner square cell, which contains a gas of rubidium atoms. The diagonal bar is an electrical connection to the cell's heaters, which are powered by the red, black and white electrical wires. The clear optical fiber extending from the middle bottom of the sensor connects to a control box.
Credit: S. Knappe/NIST

Researchers from the National Institute of Standards and Technology (NIST) and the German national metrology institute have used NIST's miniature atom-based magnetic sensor to successfully track a human heartbeat, confirming the device's potential for biomedical applications.

Related Articles


Described in Applied Physics Letters, the study is the first to be performed under conditions resembling a clinical setting with the NIST mini-sensors, which until now have been operated mostly in physics laboratories. The new experiments were carried out at the Physikalisch Technische Bundesanstalt (PTB) in Berlin, Germany, in a building described as having the world's best magnetic shielding -- necessary to block the Earth's magnetic field and other external sources from interfering with the high-precision measurements. PTB has an ongoing program in biomagnetic imaging using human subjects.

The NIST sensor -- a tiny container of about 100 billion rubidium atoms in gas form, a low-power infrared laser, and optics -- measured the heart's magnetic signature in picoteslas (trillionths of a tesla). The tesla is the unit that defines magnetic field strength. For comparison, the Earth's magnetic field is a million times stronger (measured in millionths of a tesla) than a heartbeat, and an MRI machine uses fields several million times stronger still (operating at several tesla).

In the experiments at PTB, the NIST sensor was placed 5 millimeters above the left chest of a person lying face up on a bed. The sensor successfully detected the weak but regular magnetic pattern of the heartbeat. The same signals were recorded using the "gold standard" for magnetic measurements, a SQUID (superconducting quantum interference device). A comparison of the signals confirmed that the NIST mini-sensor correctly measured the heartbeat and identified many typical signal features. The NIST mini-sensor generates more "noise" (interference) in the signal but has the advantage of operating at room temperature, whereas SQUIDs work best at minus 269 degrees Celsius and require more complicated and expensive supporting apparatus.

A spin-off of NIST's miniature atomic clocks, NIST's magnetic mini-sensors were first developed in 2004. Recently, they were packaged with fiber optics for detecting the light signals that register magnetic field strength. In addition, the control system has been reduced in size, so the entire apparatus can be transported easily to other laboratories.

The new results suggest that NIST mini-sensors could be used to make magnetocardiograms, a supplement or alternative to electrocardiograms. The study also demonstrated for the first time that atomic magnetometers can offer sensing stability lasting tens of seconds, as needed for an emerging technique called magnetorelaxometry (MRX), which measures the magnetization decay of magnetic nanoparticles. MRX is used to localize, quantify and image magnetic nanoparticles inserted into biological tissue for medical applications such as targeted drug treatments. Further tests of the NIST sensors at PTB are planned.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Svenja Knappe, Tilmann H. Sander, Olaf Kosch, Frank Wiekhorst, John Kitching, Lutz Trahms. Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications. Applied Physics Letters, 2010; 97 (13): 133703 DOI: 10.1063/1.3491548

Cite This Page:

National Institute of Standards and Technology (NIST). "Mini-sensor traces faint magnetic signature of human heartbeat." ScienceDaily. ScienceDaily, 17 October 2010. <www.sciencedaily.com/releases/2010/10/101014121200.htm>.
National Institute of Standards and Technology (NIST). (2010, October 17). Mini-sensor traces faint magnetic signature of human heartbeat. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2010/10/101014121200.htm
National Institute of Standards and Technology (NIST). "Mini-sensor traces faint magnetic signature of human heartbeat." ScienceDaily. www.sciencedaily.com/releases/2010/10/101014121200.htm (accessed October 31, 2014).

Share This



More Matter & Energy News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jaguar Land Rover Opens $800 Million Factory in Britain

Jaguar Land Rover Opens $800 Million Factory in Britain

AFP (Oct. 30, 2014) British luxury car manufacturer Jaguar Land Rover opened a $800 million engine manufacturing centre in western England, creating 1,400 jobs. Duration: 00:45 Video provided by AFP
Powered by NewsLook.com
SkyCruiser Concept Claims to Solve Problem With Flying Cars

SkyCruiser Concept Claims to Solve Problem With Flying Cars

Buzz60 (Oct. 30, 2014) A start-up company called Krossblade says its SkyCruiser concept flying car solves the problem with most flying car concepts. Mara Montalbano (@maramontalbano) explains. Video provided by Buzz60
Powered by NewsLook.com
Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Robots Get Funky on the Dance Floor

Robots Get Funky on the Dance Floor

AP (Oct. 29, 2014) Dancing, spinning and fighting robots are showing off their agility at "Robocomp" in Krakow. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins