Featured Research

from universities, journals, and other organizations

A forest of nanorods: Amazing nanostructures created by glancing-angle deposition

Date:
October 21, 2010
Source:
American Institute of Physics
Summary:
Just as landscape photographs shot in low-angle light dramatically accentuate subtle swales and mounds, depositing metal vapors at glancing angles turns a rough surface into amazing nanostructures with a vast range of potential properties.

Just as landscape photographs shot in low-angle light dramatically accentuate subtle swales and mounds, depositing metal vapors at glancing angles turns a rough surface into amazing nanostructures with a vast range of potential properties.

Related Articles


For decades, vapor deposition has been a standard technique for creating modern microelectronic circuits. But nearly all of industry's efforts have been devoted to making structures as flat and smooth as possible. Rather than placing metal sources in the high-noon position used to make featureless structures, Daniel Gall of Rensselaer Polytechnic Institute is one of several dozen research leaders who place them at very narrow angles akin to sunrise or sunset illumination. Metal atoms then hit primarily any high spots on the target surface. Continued deposition creates a forest of nanorods, rather than flat films, since each growing rod shadows a volume behind it. Starting with a patterned substrate yields a regular array of nanoscale columns, like skyscrapers in downtown Manhattan.

Gall describes his research at the AVS 57th International Symposium & Exhibition, which takes place this week at the Albuquerque Convention Center in New Mexico.

In his talk, Gall reveals a new theory that predicts how the deposition temperature and diffusion affects the diameters of the nanorods.

"Atoms moving by surface diffusion typically smooth the surface," Gall says. "Atomic shadowing causes the opposite effects, making the surface rough. Glancing-angle deposition extends shadowing effects to higher temperatures, which lead to larger-diameter nanorods."

He also illustrates his presentation with images of a variety of nanostructures created in his lab, including curiously shaped half-moons made when he started with a pattern of self-assembled spheres.

Future applications for nanorod structures such as Gall's include nanosensors, optical elements, fuel-cell cathodes and electrical contacts for buffering thermal expansion.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "A forest of nanorods: Amazing nanostructures created by glancing-angle deposition." ScienceDaily. ScienceDaily, 21 October 2010. <www.sciencedaily.com/releases/2010/10/101020171558.htm>.
American Institute of Physics. (2010, October 21). A forest of nanorods: Amazing nanostructures created by glancing-angle deposition. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/10/101020171558.htm
American Institute of Physics. "A forest of nanorods: Amazing nanostructures created by glancing-angle deposition." ScienceDaily. www.sciencedaily.com/releases/2010/10/101020171558.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins