Featured Research

from universities, journals, and other organizations

New propulsion method developed for metallic micro- and nano-objects

Date:
November 7, 2010
Source:
CNRS (Délégation Paris Michel-Ange)
Summary:
A new propulsion method for metallic micro- and nano-objects has been developed. The process is based on the novel concept of bipolar electrochemistry: under the influence of an electric field, one end of a metallic object grows while the other end dissolves. Thanks to this permanent self-regeneration, objects can move at speeds of the order of a hundred micrometers per second. This work could find applications in fields ranging from nanomedicine to micromechanics.

Example of propulsion of a zinc dendrite.
Credit: Image courtesy of CNRS; Copyright Kuhn/ISM

A new propulsion method for metallic micro- and nano-objects has been developed by researchers from the Institute of Molecular Sciences (Institut des sciences moléculaires, CNRS/ENSCBP/Universités Bordeaux 1 and 4). The process is based on the novel concept of bipolar electrochemistry: under the influence of an electric field, one end of a metallic object grows while the other end dissolves. Thanks to this permanent self-regeneration, objects can move at speeds of the order of a hundred micrometers per second.

This work, published in the Journal of the American Chemical Society, could find applications in fields ranging from nanomedicine to micromechanics.

Several approaches are currently being explored to induce controlled directional motion of nano-or micro-objects. In particular, scientists are studying the use of so-called 'fuel molecules' which, by decomposing, can propel a dissymmetric object. Other potential avenues include reproducing natural systems by mimicking the motion of bacteria or the rotation of well-known biological systems such as ATP synthase.

For the first time, two researchers from the Bordeaux Institute of Molecular Sciences (CNRS/ENSCBP/Universités Bordeaux 1 and 4) have shown that such motion can be induced using a novel approach called bipolar electrochemistry. The chemists apply an electric field to metallic objects, which then have a different charge at each end, namely a positive charge at one end and a negative charge at the opposite end. This polarization is high enough for opposing redox chemical reactions to occur on both sides. Thus, the object is oxidized and dissolves at one end, while a metal salt present in the solution is reduced and metal is deposited at the other end, causing the object to expand. This process finally induces self-regeneration of the object while causing it to move. The motion brought about in this way is directed towards one of the two electrodes. Speed can be controlled by varying the potential difference between the electrodes.

The advantage of this method is that no conventional fuel is required to induce this motion. Moreover, such micromotors could be adapted so as to push other objects in a predetermined direction and disappear once their task is completed. This novel process opens up new prospects in various fields of application, ranging from micromechanics to nanomedicine.


Story Source:

The above story is based on materials provided by CNRS (Délégation Paris Michel-Ange). Note: Materials may be edited for content and length.


Journal Reference:

  1. Gabriel Loget and Alexander Kuhn. Propulsion of Microobjects by Dynamic Bipolar Self-Regeneration. Journal of the American Chemical Society, 2010 DOI: 10.1021/ja107644x

Cite This Page:

CNRS (Délégation Paris Michel-Ange). "New propulsion method developed for metallic micro- and nano-objects." ScienceDaily. ScienceDaily, 7 November 2010. <www.sciencedaily.com/releases/2010/11/101103152000.htm>.
CNRS (Délégation Paris Michel-Ange). (2010, November 7). New propulsion method developed for metallic micro- and nano-objects. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/11/101103152000.htm
CNRS (Délégation Paris Michel-Ange). "New propulsion method developed for metallic micro- and nano-objects." ScienceDaily. www.sciencedaily.com/releases/2010/11/101103152000.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins