Featured Research

from universities, journals, and other organizations

Coronal mass ejections: Scientists unlock the secrets of exploding plasma clouds on the Sun

Date:
November 14, 2010
Source:
American Physical Society
Summary:
The Sun sporadically expels trillions of tons of million-degree hydrogen gas in explosions called coronal mass ejections (CMEs). Such clouds are enormous in size (spanning millions of miles) and are made up of magnetized plasma gases, so hot that hydrogen atoms are ionized. Now, using data from the twin-satellite STEREO mission, scientists have demonstrated for the first time that the observed motion of erupting plasma clouds driven by magnetic forces can be correctly explained by a theoretical model.

An erupting "prominence" is observed using photons at wavelength 304 . A prominence typically outlines the trailing part of a larger CME flux rope structure. The striated plasma filaments are organized by magnetic fields into strands of a "rope." In this snapshot, the apex is at about 300,000 km above the solar surface, a distance equal to about 24 Earths placed side by side. Image obtained at 07:19 UT, Sept. 14, 1999, by the EIT instrument on the SOHO spacecraft. Both SOHO and STEREO are cooperative missions between the European Space Agency (ESA) and NASA.
Credit: ESA and NASA

The Sun sporadically expels trillions of tons of million-degree hydrogen gas in explosions called coronal mass ejections (CMEs). Such clouds are enormous in size (spanning millions of miles) and are made up of magnetized plasma gases, so hot that hydrogen atoms are ionized. CMEs are rapidly accelerated by magnetic forces to speeds of hundreds of kilometers per second to upwards of 2,000 kilometers per second in several tens of minutes. CMEs are closely related to solar flares and, when they impinge on Earth, can trigger spectacular auroral displays. They also induce strong electric currents in Earth's plasma atmosphere (i.e., the magnetosphere and ionosphere), leading to outages in telecommunications and GPS systems and even the collapse of electric power grids if the disturbances are very severe.

Related Articles


Since the first observation of a solar flare in 1859, solar eruptions ("explosions") have attracted much attention from scientists around the world and have been studied with a succession of increasingly sophisticated international satellite missions in the past three decades. A major challenge has been that enormous and complicated plasma structures accelerating away from the Sun can only be observed remotely. As a result, it has been difficult to test theoretical models to establish a correct understanding of the mechanisms that cause such eruptions. But in 2006, an international twin-satellite mission called STEREO was launched to continuously observe the erupting plasma structures from the Sun to Earth.

Now, using the data from STEREO, scientists at the Naval Research Laboratory (NRL) in Washington, D.C., have demonstrated for the first time that the observed motion of erupting plasma clouds driven by magnetic forces can be correctly explained by a theoretical model.

The theory, controversial when it was first proposed in 1989 by Dr. James Chen of NRL, is based on the concept that an erupting plasma cloud is a giant "magnetic flux rope," a rope of "twisted" magnetic field lines shaped like a partial donut. Chen and Valbona Kunkel, a doctoral student at George Mason University, have applied this model to the new STEREO data of CMEs and shown that the theoretical solutions agree with the measured trajectories of the ejected clouds within the entire field of view from the Sun to Earth.

The position of the leading edge (LE) of a CME that erupted on December 24, 2007 were tracked by the STEREO-A spacecraft from the earliest stages of eruption to its arrival at 1 AU approximately five days later. The magnetic field and plasma parameters were measured by the STEREO-B spacecraft. The agreement between theory and data is within 1 percent of the measured position of the LE. Chen and Kunkel's results show that the theoretically predicted magnetic field and plasma properties are in excellent agreement with the measurements aboard STEREO-B. This is the first model that can replicate directly observed quantities near the Sun and Earth as well as the actual trajectories of CMEs. Prior to STEREO, the motion of CMEs in the region corresponding to HI1 and HI2 data was not observed.

Interestingly, the basic forces acting on solar flux ropes are the same as those in laboratory plasma structures such as tokamaks developed to produce controlled fusion energy. The mechanism described by the theory is also potentially applicable to eruptions on other stars.

Researchers presented their work at the 52nd annual meeting of the American Physical Society's Division of Plasma Physics, held in Chicago Nov. 8-12.


Story Source:

The above story is based on materials provided by American Physical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Physical Society. "Coronal mass ejections: Scientists unlock the secrets of exploding plasma clouds on the Sun." ScienceDaily. ScienceDaily, 14 November 2010. <www.sciencedaily.com/releases/2010/11/101108071925.htm>.
American Physical Society. (2010, November 14). Coronal mass ejections: Scientists unlock the secrets of exploding plasma clouds on the Sun. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2010/11/101108071925.htm
American Physical Society. "Coronal mass ejections: Scientists unlock the secrets of exploding plasma clouds on the Sun." ScienceDaily. www.sciencedaily.com/releases/2010/11/101108071925.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Space & Time News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Video Shows Stars If They Were as Close to Earth as Sun

Video Shows Stars If They Were as Close to Earth as Sun

Buzz60 (Jan. 30, 2015) Russia&apos;s space agency created a video that shows what our sky would look like with different star if they were as close as our sun. Patrick Jones (@Patrick_E_Jones) walks us through the cool video. Video provided by Buzz60
Powered by NewsLook.com
Dog-Loving Astronaut Wins Best Photo of 2015

Dog-Loving Astronaut Wins Best Photo of 2015

Buzz60 (Jan. 30, 2015) Retired astronaut and television host, Leland Melvin, snuck his dogs into the NASA studio so they could be in his official photo. As Mara Montalbano (@maramontalbano) shows us, the secret is out. Video provided by Buzz60
Powered by NewsLook.com
NASA Holds Memorial to Remember Astronauts

NASA Holds Memorial to Remember Astronauts

AP (Jan. 29, 2015) NASA is remembering 17 astronauts who were killed in the line of duty and dozens more who have died since the agency&apos;s beginning. A remembrance ceremony was held Thursday at NASA&apos;s Marshall Space Flight Center in Alabama. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Asteroid's Moon Spotted During Earth Flyby

Asteroid's Moon Spotted During Earth Flyby

Rumble (Jan. 27, 2015) Scientists working with NASA&apos;s Deep Space Network antenna at Goldstone, California discovered an unexpected moon while observing asteroid 2004 BL86 during its recent flyby past Earth. Credit to &apos;NASA JPL&apos;. Video provided by Rumble
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins